Menu
July 7, 2019  |  

Jitterbug: somatic and germline transposon insertion detection at single-nucleotide resolution.

Transposable elements are major players in genome evolution. Transposon insertion polymorphisms can translate into phenotypic differences in plants and animals and are linked to different diseases including human cancer, making their characterization highly relevant to the study of genome evolution and genetic diseases. Here we present Jitterbug, a novel tool that identifies transposable element insertion sites at single-nucleotide resolution based on the pairedend mapping and clipped-read signatures produced by NGS alignments. Jitterbug can be easily integrated into existing NGS analysis pipelines, using the standard BAM format produced by frequently applied alignment tools (e.g. bwa, bowtie2), with no need to realign reads to a set of consensus transposon sequences. Jitterbug is highly sensitive and able to recall transposon insertions with a very high specificity, as demonstrated by benchmarks in the human and Arabidopsis genomes, and validation using long PacBio reads. In addition, Jitterbug estimates the zygosity of transposon insertions with high accuracy and can also identify somatic insertions. We demonstrate that Jitterbug can identify mosaic somatic transposon movement using sequenced tumor-normal sample pairs and allows for estimating the cancer cell fraction of clones containing a somatic TE insertion. We suggest that the independent methods we use to evaluate performance are a step towards creating a gold standard dataset for benchmarking structural variant prediction tools.


July 7, 2019  |  

Completing the human genome: the progress and challenge of satellite DNA assembly.

Genomic studies rely on accurate chromosome assemblies to explore sequence-based models of cell biology, evolution and biomedical disease. However, even the extensively studied human genome has not yet reached a complete, ‘telomere-to-telomere’, chromosome assembly. The largest assembly gaps remain in centromeric regions and acrocentric short arms, sites known to contain megabase-sized arrays of tandem repeats, or satellite DNAs. This review aims to briefly address the progress and challenges of generating correct assemblies of satellite DNA arrays. Although the focus is placed on the human genome, many concepts presented here are applicable to other genomes.


July 7, 2019  |  

Chromosomal rearrangements as barriers to genetic homogenization between archaic and modern humans.

Chromosomal rearrangements, which shuffle DNA throughout the genome, are an important source of divergence across taxa. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5′-end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Among rearrangements identified in Neanderthals, 13% are transposition of selfish genetic elements, whereas 32% appear to be ectopic exchange between repeats. In Denisovan, the pattern is similar but numbers are significantly higher with 18% of rearrangements reflecting transposition and 40% ectopic exchange between distantly related repeats. There is an excess of divergent rearrangements relative to polymorphism in Denisovan, which might result from nonuniform rates of mutation, possibly reflecting a burst of transposable element activity in the lineage that led to Denisovan. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

svviz: a read viewer for validating structural variants.

Visualizing read alignments is the most effective way to validate candidate structural variants (SVs) with existing data. We present svviz, a sequencing read visualizer for SVs that sorts and displays only reads relevant to a candidate SV. svviz works by searching input bam(s) for potentially relevant reads, realigning them against the inferred sequence of the putative variant allele as well as the reference allele and identifying reads that match one allele better than the other. Separate views of the two alleles are then displayed in a scrollable web browser view, enabling a more intuitive visualization of each allele, compared with the single reference genome-based view common to most current read browsers. The browser view facilitates examining the evidence for or against a putative variant, estimating zygosity, visualizing affected genomic annotations and manual refinement of breakpoints. svviz supports data from most modern sequencing platforms.svviz is implemented in python and freely available from http://svviz.github.io/. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019  |  

Wham: Identifying structural variants of biological consequence.

Existing methods for identifying structural variants (SVs) from short read datasets are inaccurate. This complicates disease-gene identification and efforts to understand the consequences of genetic variation. In response, we have created Wham (Whole-genome Alignment Metrics) to provide a single, integrated framework for both structural variant calling and association testing, thereby bypassing many of the difficulties that currently frustrate attempts to employ SVs in association testing. Here we describe Wham, benchmark it against three other widely used SV identification tools-Lumpy, Delly and SoftSearch-and demonstrate Wham’s ability to identify and associate SVs with phenotypes using data from humans, domestic pigeons, and vaccinia virus. Wham and all associated software are covered under the MIT License and can be freely downloaded from github (https://github.com/zeeev/wham), with documentation on a wiki (http://zeeev.github.io/wham/). For community support please post questions to https://www.biostars.org/.


July 7, 2019  |  

FGAP: an automated gap closing tool.

The fast reduction of prices of DNA sequencing allowed rapid accumulation of genome data. However, the process of obtaining complete genome sequences is still very time consuming and labor demanding. In addition, data produced from various sequencing technologies or alternative assemblies remain underexplored to improve assembly of incomplete genome sequences.We have developed FGAP, a tool for closing gaps of draft genome sequences that takes advantage of different datasets. FGAP uses BLAST to align multiple contigs against a draft genome assembly aiming to find sequences that overlap gaps. The algorithm selects the best sequence to fill and eliminate the gap.FGAP reduced the number of gaps by 78% in an E. coli draft genome assembly using two different sequencing technologies, Illumina and 454. Using PacBio long reads, 98% of gaps were solved. In human chromosome 14 assemblies, FGAP reduced the number of gaps by 35%. All the inserted sequences were validated with a reference genome using QUAST. The source code and a web tool are available at http://www.bioinfo.ufpr.br/fgap/.


July 7, 2019  |  

Characterization of structural variants with single molecule and hybrid sequencing approaches.

Structural variation is common in human and cancer genomes. High-throughput DNA sequencing has enabled genome-scale surveys of structural variation. However, the short reads produced by these technologies limit the study of complex variants, particularly those involving repetitive regions. Recent ‘third-generation’ sequencing technologies provide single-molecule templates and longer sequencing reads, but at the cost of higher per-nucleotide error rates.We present MultiBreak-SV, an algorithm to detect structural variants (SVs) from single molecule sequencing data, paired read sequencing data, or a combination of sequencing data from different platforms. We demonstrate that combining low-coverage third-generation data from Pacific Biosciences (PacBio) with high-coverage paired read data is advantageous on simulated chromosomes. We apply MultiBreak-SV to PacBio data from four human fosmids and show that it detects known SVs with high sensitivity and specificity. Finally, we perform a whole-genome analysis on PacBio data from a complete hydatidiform mole cell line and predict 1002 high-probability SVs, over half of which are confirmed by an Illumina-based assembly. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Next-generation sequencing and large genome assemblies.

The next-generation sequencing (NGS) revolution has drastically reduced time and cost requirements for sequencing of large genomes, and also qualitatively changed the problem of assembly. This article reviews the state of the art in de novo genome assembly, paying particular attention to mammalian-sized genomes. The strengths and weaknesses of the main sequencing platforms are highlighted, leading to a discussion of assembly and the new challenges associated with NGS data. Current approaches to assembly are outlined and the various software packages available are introduced and compared. The question of whether quality assemblies can be produced using short-read NGS data alone, or whether it must be combined with more expensive sequencing techniques, is considered. Prospects for future assemblers and tests of assembly performance are also discussed.


July 7, 2019  |  

The evolution and population diversity of human-specific segmental duplications

Segmental duplications contribute to human evolution, adaptation and genomic instability but are often poorly characterized. We investigate the evolution, genetic variation and coding potential of human-specific segmental duplications (HSDs). We identify 218 HSDs based on analysis of 322 deeply sequenced archaic and contemporary hominid genomes. We sequence 550 human and nonhuman primate genomic clones to reconstruct the evolution of the largest, most complex regions with protein-coding potential (N?=?80 genes from 33 gene families). We show that HSDs are non-randomly organized, associate preferentially with ancestral ape duplications termed ‘core duplicons’ and evolved primarily in an interspersed inverted orientation. In addition to Homo sapiens-specific gene expansions (such as TCAF1/TCAF2), we highlight ten gene families (for example, ARHGAP11B and SRGAP2C) where copy number never returns to the ancestral state, there is evidence of mRNA splicing and no common gene-disruptive mutations are observed in the general population. Such duplicates are candidates for the evolution of human-specific adaptive traits.


July 7, 2019  |  

A pipeline for local assembly of minisatellite alleles from single-molecule sequencing data.

The advent of Next Generation Sequencing (NGS) has led to the generation of enormous volumes of short read sequence data, cheaply and in reasonable time scales. Nevertheless, the quality of genome assemblies generated using NGS technologies has been greatly affected, compared to those generated using Sanger DNA sequencing. This is largely due to the inability of short read sequence data to scaffold repetitive structures, creating gaps, inversions and rearrangements and resulting in assemblies that are, at best, draft forms. Third generation single-molecule sequencing (SMS) technologies (e.g. Pacific Biosciences Single Molecule Real Time (SMRT) system) address this challenge by generating sequences with increased read lengths, offering the prospect to better recover these complex repetitive structures, concomitantly improving assembly quality.Here, we evaluate the ability of SMS data (specifically human genome Pacific Biosciences SMRT data) to recover poorly represented repetitive sequences (specifically, GC-rich human minisatellites). To do this we designed a pipeline for the collection, processing and local assembly of single-molecule sequence data to form accurate contiguous local reconstructions. Our results show the recovery of an allele of the non-coding minisatellite MS1 (located on chromosome 1 at 1p33-35) at greater than 97% identity to reference (GRCh38) from the unprocessed sequence data of a haploid complete hydatidiform mole (CHM1) cell line. Furthermore, our assembly revealed an allele of over 500 repeat units; much larger than the reference (GRCh38), but consistent in structure with naturally occurring alleles that are segregating in human populations. This local assembly’s reconstruction was validated with the release of the whole genome assemblies GCA_001297185.1 and GCA_000772585.3, where this allele occurs. Additionally, application of this pipeline to coding minisatellites in the PRDM9 and ZNF93 genes enabled recovery of high identity allele structures for these sequence regions whose length was confirmed by PCR from cell line genomic DNA. The internal repeat structure of the PRDM9 allele recovered was consistent with common human-specific alleles.Code available at https://github.com/ndliberial/smrt_pipeline CONTACT: dno2@le.ac.uk. © The Author 2016. Published by Oxford University Press.


July 7, 2019  |  

Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly.

The human reference genome assembly plays a central role in nearly all aspects of today’s basic and clinical research. GRCh38 is the first coordinate-changing assembly update since 2009; it reflects the resolution of roughly 1000 issues and encompasses modifications ranging from thousands of single base changes to megabase-scale path reorganizations, gap closures, and localization of previously orphaned sequences. We developed a new approach to sequence generation for targeted base updates and used data from new genome mapping technologies and single haplotype resources to identify and resolve larger assembly issues. For the first time, the reference assembly contains sequence-based representations for the centromeres. We also expanded the number of alternate loci to create a reference that provides a more robust representation of human population variation. We demonstrate that the updates render the reference an improved annotation substrate, alter read alignments in unchanged regions, and impact variant interpretation at clinically relevant loci. We additionally evaluated a collection of new de novo long-read haploid assemblies and conclude that although the new assemblies compare favorably to the reference with respect to continuity, error rate, and gene completeness, the reference still provides the best representation for complex genomic regions and coding sequences. We assert that the collected updates in GRCh38 make the newer assembly a more robust substrate for comprehensive analyses that will promote our understanding of human biology and advance our efforts to improve health. © 2017 Schneider et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies.

Many tools have been developed for haplotype assembly-the reconstruction of individual haplotypes using reads mapped to a reference genome sequence. Due to increasing interest in obtaining haplotype-resolved human genomes, a range of new sequencing protocols and technologies have been developed to enable the reconstruction of whole-genome haplotypes. However, existing computational methods designed to handle specific technologies do not scale well on data from different protocols. We describe a new algorithm, HapCUT2, that extends our previous method (HapCUT) to handle multiple sequencing technologies. Using simulations and whole-genome sequencing (WGS) data from multiple different data types-dilution pool sequencing, linked-read sequencing, single molecule real-time (SMRT) sequencing, and proximity ligation (Hi-C) sequencing-we show that HapCUT2 rapidly assembles haplotypes with best-in-class accuracy for all data types. In particular, HapCUT2 scales well for high sequencing coverage and rapidly assembled haplotypes for two long-read WGS data sets on which other methods struggled. Further, HapCUT2 directly models Hi-C specific error modalities, resulting in significant improvements in error rates compared to HapCUT, the only other method that could assemble haplotypes from Hi-C data. Using HapCUT2, haplotype assembly from a 90× coverage whole-genome Hi-C data set yielded high-resolution haplotypes (78.6% of variants phased in a single block) with high pairwise phasing accuracy (~98% across chromosomes). Our results demonstrate that HapCUT2 is a robust tool for haplotype assembly applicable to data from diverse sequencing technologies.© 2017 Edge et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Toolkit for automated and rapid discovery of structural variants.

Structural variations (SV) are broadly defined as genomic alterations that affect > 50 bp of DNA, which are shown to have significant effect on evolution and disease. The advent of high throughput sequencing (HTS) technologies and the ability to perform whole genome sequencing (WGS), makes it feasible to study these variants in depth. However, discovery of all forms of SV using WGS has proven to be challenging as the short reads produced by the predominant HTS platforms (<200bp for current technologies) and the fact that most genomes include large amounts of repeats make it very difficult to unambiguously map and accurately characterize such variants. Furthermore, existing tools for SV discovery are primarily developed for only a few of the SV types, which may have conflicting sequence signatures (i.e. read pairs, read depth, split reads) with other, untargeted SV classes. Here we are introduce a new framework, Tardis, which combines multiple read signatures into a single package to characterize most SV types simultaneously, while preventing such conflicts. Tardis also has a modular structure that makes it easy to extend for the discovery of additional forms of SV. Copyright © 2017. Published by Elsevier Inc.


July 7, 2019  |  

Benchmarking computational tools for polymorphic transposable element detection.

Transposable elements (TEs) are an important source of human genetic variation with demonstrable effects on phenotype. Recently, a number of computational methods for the detection of polymorphic TE (polyTE) insertion sites from next-generation sequence data have been developed. The use of such tools will become increasingly important as the pace of human genome sequencing accelerates. For this report, we performed a comparative benchmarking and validation analysis of polyTE detection tools in an effort to inform their selection and use by the TE research community. We analyzed a core set of seven tools with respect to ease of use and accessibility, polyTE detection performance and runtime parameters. An experimentally validated set of 893 human polyTE insertions was used for this purpose, along with a series of simulated data sets that allowed us to assess the impact of sequence coverage on tool performance. The recently developed tool MELT showed the best overall performance followed by Mobster and then RetroSeq. PolyTE detection tools can best detect Alu insertion events in the human genome with reduced reliability for L1 insertions and substantially lowered performance for SVA insertions. We also show evidence that different polyTE detection tools are complementary with respect to their ability to detect a complete set of insertion events. Accordingly, a combined approach, coupled with manual inspection of individual results, may yield the best overall performance. In addition to the benchmarking results, we also provide notes on tool installation and usage as well as suggestions for future polyTE detection algorithm development. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.