Menu
July 7, 2019  |  

Discovery and genotyping of novel sequence insertions in many sequenced individuals

Motivation: Despite recent advances in algorithms design to characterize structural variation using high-throughput short read sequencing (HTS) data, characterization of novel sequence insertions longer than the average read length remains a challenging task. This is mainly due to both computational difficulties and the complexities imposed by genomic repeats in generating reliable assemblies to accurately detect both the sequence content and the exact location of such insertions. Additionally, de novo genome assembly algorithms typically require a very high depth of coverage, which may be a limiting factor for most genome studies. Therefore, characterization of novel sequence insertions is not a routine part of most sequencing projects. There are only a handful of algorithms that are specifically developed for novel sequence insertion discovery that can bypass the need for the whole genome de novo assembly. Still, most such algorithms rely on high depth of coverage, and to our knowledge there is only one method (PopIns) that can use multi-sample data to “collectively” obtain a very high coverage dataset to accurately find insertions common in a given population. Result: Here, we present Pamir, a new algorithm to efficiently and accurately discover and genotype novel sequence insertions using either single or multiple genome sequencing datasets. Pamir is able to detect breakpoint locations of the insertions and calculate their zygosity (i.e. heterozygous versus homozygous) by analyzing multiple sequence signatures, matching one-end-anchored sequences to small-scale de novo assemblies of unmapped reads, and conducting strand-aware local assembly. We test the efficacy of Pamir on both simulated and real data, and demonstrate its potential use in accurate and routine identification of novel sequence insertions in genome projects. Availability and implementation: Pamir is available at https://github.com/vpc-ccg/pamir. Contact:fhach@sfu.ca, prostatecentre.com or calkan@cs.bilkent.edu.tr Supplementary information:Supplementary data are available at Bioinformatics online.


July 7, 2019  |  

CLOVE: classification of genomic fusions into structural variation events.

A precise understanding of structural variants (SVs) in DNA is important in the study of cancer and population diversity. Many methods have been designed to identify SVs from DNA sequencing data. However, the problem remains challenging because existing approaches suffer from low sensitivity, precision, and positional accuracy. Furthermore, many existing tools only identify breakpoints, and so not collect related breakpoints and classify them as a particular type of SV. Due to the rapidly increasing usage of high throughput sequencing technologies in this area, there is an urgent need for algorithms that can accurately classify complex genomic rearrangements (involving more than one breakpoint or fusion).We present CLOVE, an algorithm for integrating the results of multiple breakpoint or SV callers and classifying the results as a particular SV. CLOVE is based on a graph data structure that is created from the breakpoint information. The algorithm looks for patterns in the graph that are characteristic of more complex rearrangement types. CLOVE is able to integrate the results of multiple callers, producing a consensus call.We demonstrate using simulated and real data that re-classified SV calls produced by CLOVE improve on the raw call set of existing SV algorithms, particularly in terms of accuracy. CLOVE is freely available from http://www.github.com/PapenfussLab .


July 7, 2019  |  

Genome graphs

There is increasing recognition that a single, monoploid reference genome is a poor universal reference structure for human genetics, because it represents only a tiny fraction of human variation. Adding this missing variation results in a structure that can be described as a mathematical graph: a genome graph. We demonstrate that, in comparison to the existing reference genome (GRCh38), genome graphs can substantially improve the fractions of reads that map uniquely and perfectly. Furthermore, we show that this fundamental simplification of read mapping transforms the variant calling problem from one in which many non-reference variants must be discovered de-novo to one in which the vast majority of variants are simply re-identified within the graph. Using standard benchmarks as well as a novel reference-free evaluation, we show that a simplistic variant calling procedure on a genome graph can already call variants at least as well as, and in many cases better than, a state-of-the-art method on the linear human reference genome. We anticipate that graph-based references will supplant linear references in humans and in other applications where cohorts of sequenced individuals are available.


July 7, 2019  |  

Automated structural variant verification in human genomesw using single-molecule electronic DNA mapping.

The importance of structural variation in human disease and the difficulty of detecting structural variants larger than 50 base pairs has led to the development of several long-read sequencing technologies and optical mapping platforms. Frequently, multiple technologies and ad hoc methods are required to obtain a consensus regarding the location, size and nature of a structural variant, with no approach able to reliably bridge the gap of variant sizes between the domain of short-read approaches and the largest rearrangements observed with optical mapping. To address this unmet need, we have developed a new software package, SV-VerifyTM, which utilizes data collected with the Nabsys High Definition Mapping (HD-MappingTM) system, to perform hypothesis-based verification of putative deletions. We demonstrate that whole genome maps, constructed from electronic detection of tagged DNA, hundreds of kilobases in length, can be used effectively to facilitate calling of structural variants ranging in size from 300 base pairs to hundreds of kilobase pairs. SV-Verify implements hypothesis-based verification of putative structural variants using a set of support vector machines and is capable of concurrently testing several thousand independent hypotheses. We describe support vector machine training, utilizing a well-characterized human genome, and application of the resulting classifiers to another human genome, demonstrating high sensitivity and specificity for deletions >= 300 base pairs.


July 7, 2019  |  

MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads.

We present a tool that combines fast mapping, error correction, and de novo assembly (MECAT; accessible at https://github.com/xiaochuanle/MECAT) for processing single-molecule sequencing (SMS) reads. MECAT’s computing efficiency is superior to that of current tools, while the results MECAT produces are comparable or improved. MECAT enables reference mapping or de novo assembly of large genomes using SMS reads on a single computer.


July 7, 2019  |  

XCAVATOR: accurate detection and genotyping of copy number variants from second and third generation whole-genome sequencing experiments.

We developed a novel software package, XCAVATOR, for the identification of genomic regions involved in copy number variants/alterations (CNVs/CNAs) from short and long reads whole-genome sequencing experiments.By using simulated and real datasets we showed that our tool, based on read count approach, is capable to predict the boundaries and the absolute number of DNA copies CNVs/CNAs with high resolutions. To demonstrate the power of our software we applied it to the analysis Illumina and Pacific Bioscencies data and we compared its performance to other ten state of the art tools.All the analyses we performed demonstrate that XCAVATOR is capable to detect germline and somatic CNVs/CNAs outperforming all the other tools we compared. XCAVATOR is freely available at http://sourceforge.net/projects/xcavator/ .


July 7, 2019  |  

SVachra: a tool to identify genomic structural variation in mate pair sequencing data containing inward and outward facing reads.

Characterization of genomic structural variation (SV) is essential to expanding the research and clinical applications of genome sequencing. Reliance upon short DNA fragment paired end sequencing has yielded a wealth of single nucleotide variants and internal sequencing read insertions-deletions, at the cost of limited SV detection. Multi-kilobase DNA fragment mate pair sequencing has supplemented the void in SV detection, but introduced new analytic challenges requiring SV detection tools specifically designed for mate pair sequencing data. Here, we introduce SVachra – Structural Variation Assessment of CHRomosomal Aberrations, a breakpoint calling program that identifies large insertions-deletions, inversions, inter- and intra-chromosomal translocations utilizing both inward and outward facing read types generated by mate pair sequencing.We demonstrate SVachra’s utility by executing the program on large-insert (Illumina Nextera) mate pair sequencing data from the personal genome of a single subject (HS1011). An additional data set of long-read (Pacific BioSciences RSII) was also generated to validate SV calls from SVachra and other comparison SV calling programs. SVachra exhibited the highest validation rate and reported the widest distribution of SV types and size ranges when compared to other SV callers.SVachra is a highly specific breakpoint calling program that exhibits a more unbiased SV detection methodology than other callers.


July 7, 2019  |  

The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology.

Mobile element insertions (MEIs) represent ~25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.© 2017 Gardner et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Structural variation offers new home for disease associations and gene discovery

Following completion of the Human Genome Project, most studies of human genetic variation have centered on single nucleotide polymorphisms (SNPs). SNPs are numerous in individual genomes and serve as useful genetic markers in association studies across a population. These markers have been leveraged to identify genetic loci for disease risk and draw associations with numerous traits of interest. Despite their usefulness, SNPs do not tell the whole story. For example, most SNPs are associated with only a small increased risk of disease, and they usually cannot identify on their own which genes are causal. This has resulted in what many researchers have referred to as missing or hidden heritability.


July 7, 2019  |  

Lightning-fast genome variant detection with GROM.

Current human whole genome sequencing projects produce massive amounts of data, often creating significant computational challenges. Different approaches have been developed for each type of genome variant and method of its detection, necessitating users to run multiple algorithms to find variants.We present GROM (Genome Rearrangement OmniMapper), a novel comprehensive variant detection algorithm accepting aligned read files as input and finding SNVs, indels, structural variants (SVs), and copy number variants (CNVs). We show that GROM outperforms state-of-the-art methods on seven validated benchmarks using two whole genome sequencing (WGS) datasets. Additionally, GROM boasts lightning fast run times, analyzing a 50x WGS human dataset (NA12878) on commonly available computer hardware in 11 minutes, more than an order of magnitude (up to 72 times) faster than tools detecting a similar range of variants.Addressing the needs of big data analysis, GROM combines in one algorithm SNV, indel, SV, and CNV detection providing superior speed, sensitivity, and precision. GROM is also able to detect CNVs, SNVs and indels in non-paired read WGS libraries, as well as SNVs and indels in whole exome or RNA sequencing datasets.


July 7, 2019  |  

GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly.

The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.© 2017 Cameron et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Dense and accurate whole-chromosome haplotyping of individual genomes.

The diploid nature of the human genome is neglected in many analyses done today, where a genome is perceived as a set of unphased variants with respect to a reference genome. This lack of haplotype-level analyses can be explained by a lack of methods that can produce dense and accurate chromosome-length haplotypes at reasonable costs. Here we introduce an integrative phasing strategy that combines global, but sparse haplotypes obtained from strand-specific single-cell sequencing (Strand-seq) with dense, yet local, haplotype information available through long-read or linked-read sequencing. We provide comprehensive guidance on the required sequencing depths and reliably assign more than 95% of alleles (NA12878) to their parental haplotypes using as few as 10 Strand-seq libraries in combination with 10-fold coverage PacBio data or, alternatively, 10X Genomics linked-read sequencing data. We conclude that the combination of Strand-seq with different technologies represents an attractive solution to chart the genetic variation of diploid genomes.


July 7, 2019  |  

Variant review with the Integrative Genomics Viewer.

Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV’s variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR.©2017 American Association for Cancer Research.


July 7, 2019  |  

Tools for annotation and comparison of structural variation.

The impact of structural variants (SVs) on a variety of organisms and diseases like cancer has become increasingly evident. Methods for SV detection when studying genomic differences across cells, individuals or populations are being actively developed. Currently, just a few methods are available to compare different SVs callsets, and no specialized methods are available to annotate SVs that account for the unique characteristics of these variant types. Here, we introduce SURVIVOR_ant, a tool that compares types and breakpoints for candidate SVs from different callsets and enables fast comparison of SVs to genomic features such as genes and repetitive regions, as well as to previously established SV datasets such as from the 1000 Genomes Project. As proof of concept we compared 16 SV callsets generated by different SV calling methods on a single genome, the Genome in a Bottle sample HG002 (Ashkenazi son), and annotated the SVs with gene annotations, 1000 Genomes Project SV calls, and four different types of repetitive regions. Computation time to annotate 134,528 SVs with 33,954 of annotations was 22 seconds on a laptop.


July 7, 2019  |  

Interrogating the “unsequenceable” genomic trinucleotide repeat disorders by long-read sequencing.

Microsatellite expansion, such as trinucleotide repeat expansion (TRE), is known to cause a number of genetic diseases. Sanger sequencing and next-generation short-read sequencing are unable to interrogate TRE reliably. We developed a novel algorithm called RepeatHMM to estimate repeat counts from long-read sequencing data. Evaluation on simulation data, real amplicon sequencing data on two repeat expansion disorders, and whole-genome sequencing data generated by PacBio and Oxford Nanopore technologies showed superior performance over competing approaches. We concluded that long-read sequencing coupled with RepeatHMM can estimate repeat counts on microsatellites and can interrogate the “unsequenceable” genomic trinucleotide repeat disorders.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.