X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Rishishwar, Lavanya and Mariño-Ramírez, Leonardo and Jordan, I King

Transposable elements (TEs) are an important source of human genetic variation with demonstrable effects on phenotype. Recently, a number of computational methods for the detection of polymorphic TE (polyTE) insertion sites from next-generation sequence data have been developed. The use of such tools will become increasingly important as the pace of human genome sequencing accelerates. For this report, we performed a comparative benchmarking and validation analysis of polyTE detection tools in an effort to inform their selection and use by the TE research community. We analyzed a core set of seven tools with respect to ease of use and accessibility, polyTE detection performance and runtime parameters. An experimentally validated set of 893 human polyTE insertions was used for this purpose, along with a series of simulated data sets that allowed us to assess the impact of sequence coverage on tool performance. The recently developed tool MELT showed the best overall performance followed by Mobster and then RetroSeq. PolyTE detection tools can best detect Alu insertion events in the human genome with reduced reliability for L1 insertions and substantially lowered performance for SVA insertions. We also show evidence that different polyTE detection tools are complementary with respect to their ability to detect a complete set of insertion events. Accordingly, a combined approach, coupled with manual inspection of individual results, may yield the best overall performance. In addition to the benchmarking results, we also provide notes on tool installation and usage as well as suggestions for future polyTE detection algorithm development. Published by Oxford University Press 2016. This work is written by US Government employees and is in the public domain in the US.

Journal: Briefings in bioinformatics
DOI: 10.1093/bib/bbw072
Year: 2017

Read Publication

 

Stay
Current

Visit our blog »