X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, July 19, 2019

Genome-wide DNA methylation analysis of Haloferax volcanii H26 and identification of DNA methyltransferase related PD-(D/E)XK nuclease family protein HVO_A0006.

Restriction-modification (RM) systems have evolved to protect the cell from invading DNAs and are composed of two enzymes: a DNA methyltransferase and a restriction endonuclease. Although RM systems are present in both archaeal and bacterial genomes, DNA methylation in archaea has not been well defined. In order to characterize the function of RM systems in archaeal species, we have made use of the model haloarchaeon Haloferax volcanii. A genomic DNA methylation analysis of H. volcanii strain H26 was performed using PacBio single molecule real-time (SMRT) sequencing. This analysis was also performed on a strain of H. volcanii in which an…

Read More »

Friday, July 19, 2019

Insight into the recent genome duplication of the halophilic yeast Hortaea werneckii: combining an improved genome with gene expression and chromatin structure.

Extremophilic organisms demonstrate the flexibility and adaptability of basic biological processes by highlighting how cell physiology adapts to environmental extremes. Few eukaryotic extremophiles have been well studied and only a small number are amenable to laboratory cultivation and manipulation. A detailed characterization of the genome architecture of such organisms is important to illuminate how they adapt to environmental stresses. One excellent example of a fungal extremophile is the halophile Hortaea werneckii (Pezizomycotina, Dothideomycetes, Capnodiales), a yeast-like fungus able to thrive at near-saturating concentrations of sodium chloride and which is also tolerant to both UV irradiation and desiccation. Given its unique…

Read More »

Sunday, July 7, 2019

Complete genome sequences of a clinical isolate and an environmental isolate of Vibrio parahaemolyticus.

Vibrio parahaemolyticus is the leading cause of seafood-borne infections in the United States. We report complete genome sequences for two V. parahaemolyticus strains isolated in 2007, CDC_K4557 and FDA_R31 of clinical and oyster origin, respectively. These two sequences might assist in the investigation of differential virulence of this organism. Copyright © 2015 Lüdeke et al.

Read More »

Sunday, July 7, 2019

Complete genome of Jeotgalibacillus malaysiensis D5(T) consisting of a chromosome and a circular megaplasmid.

Jeotgalibacillus spp. are halophilic bacteria within the family Planococcaceae. No genomes of Jeotgalibacillus spp. have been reported to date, and their metabolic pathways are unknown. How the bacteria survive in hypertonic conditions such as seawater is yet to be discovered. As only few studies have been conducted on Jeotgalibacillus spp., potential applications of these bacteria are unknown. Here, we present the complete genome of J. malaysiensis D5(T) (=DSM 28777(T) =KCTC 33350(T)), which is invaluable in identifying interesting applications for this genus. Copyright © 2015 Elsevier B.V. All rights reserved.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Haloarcula sp. CBA1115 isolated from non-purified solar salts.

Haloarcula sp. CBA1115, isolated from non-purified solar salts from South Korea, is a halophilic archaeon belonging to the family Halobacteriaceae. Here, we present the complete genome sequence of the strain Haloarcula sp. CBA1115 (4,225,046bp, with a G+C content of 61.98%), which is distributed over one chromosome and five plasmids. A comparison of the genome sequence of Haloarcula sp. CBA1115 with those of members of its closely related taxa showed that the closest neighbor is Haloarcula hispanica Y27, a popular model organism for archaeal studies. The strain was found to possess a number of genes predicted to be involved in osmo-regulatory…

Read More »

Sunday, July 7, 2019

Genome sequence of Halomonas sp. strain KO116, an ionic liquid-tolerant marine bacterium isolated from a lignin-enriched seawater microcosm.

Halomonas sp. strain KO116 was isolated from Nile Delta Mediterranean Sea surface water enriched with insoluble organosolv lignin. It was further screened for growth on alkali lignin minimal salts medium agar. The strain tolerates the ionic liquid 1-ethyl-3-methylimidazolium acetate. Its complete genome sequence is presented in this report. Copyright © 2015 O’Dell et al.

Read More »

Sunday, July 7, 2019

Genome sequence of the haloarchaeon Haloterrigena jeotgali type strain A29(T) isolated from salt-fermented food.

Haloterrigena jeotgali is a halophilic archaeon within the family Natrialbaceae that was isolated from shrimp jeotgal, a traditional Korean salt-fermented food. A29(T) is the type strain of H. jeotgali, and is a Gram-negative staining, non-motile, rod-shaped archaeon that grows in 10 %-30 % (w/v) NaCl. We present the annotated H. jeotgali A29(T) genome sequence along with a summary of its features. The 4,131,621 bp genome with a GC content of 64.9 % comprises 4,215 protein-coding genes and 127 RNA genes. The sequence can provide useful information on genetic mechanisms that enable haloarchaea to endure a hypersaline environment.

Read More »

Sunday, July 7, 2019

Draft genome sequence of the extremely halophilic archaeon Haladaptatus cibarius type strain D43T isolated from fermented seafood

An extremely halophilic archaeon, Haladaptatus cibarius D43 T , was isolated from traditional Korean salt-rich fermented seafood. Strain D43 T shows the highest 16S rRNA gene sequence similarity (98.7 %) with Haladaptatus litoreus RO1-28 T , is Gram-negative staining, motile, and extremely halophilic. Despite potential industrial applications of extremely halophilic archaea, their genome characteristics remain obscure. Here, we describe the whole genome sequence and annotated features of strain D43 T . The 3,926,724 bp genome includes 4,092 protein-coding and 57 RNA genes (including 6 rRNA and 49 tRNA genes) with an average G?+?C content of 57.76 %.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Salinicoccus halodurans H3B36, isolated from the Qaidam Basin in China.

Salinicoccus halodurans H3B36 is a moderately halophilic bacterium isolated from a sediment sample of Qaidam Basin at 3.2 m vertical depth. Strain H3B36 accumulate N (a)-acetyl-a-lysine as compatible solute against salinity and heat stresses and may have potential applications in industrial biotechnology. In this study, we sequenced the genome of strain H3B36 using single molecule, real-time sequencing technology on a PacBio RS II instrument. The complete genome of strain H3B36 was 2,778,379 bp and contained 2,853 protein-coding genes, 12 rRNA genes, and 61 tRNA genes with 58 tandem repeats, six minisatellite DNA sequences, 11 genome islands, and no CRISPR repeat region. Further…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Vibrio parahaemolyticus environmental strain UCM-V493.

Vibrio parahaemolyticus is the leading bacterial cause of seafood-related gastroenteritis in the world. Here, we report the complete genome sequence and annotation of an environmental strain of V. parahaemolyticus, UCM-V493, with the aim of understanding the differences between the clinical and environmental isolates of the bacteria. We also make some preliminary sequence comparisons with the clinical strain RIMD2210633.

Read More »

Sunday, July 7, 2019

Genome sequence of the moderately halophilic bacterium Salinicoccus carnicancri type strain Crm(T) (= DSM 23852(T)).

Salinicoccus carnicancri Jung et al. 2010 belongs to the genus Salinicoccus in the family Staphylococcaceae. Members of the Salinicoccus are moderately halophilic and originate from various salty environments. The halophilic features of the Salinicoccus suggest their possible uses in biotechnological applications, such as biodegradation and fermented food production. However, the genus Salinicoccus is poorly characterized at the genome level, despite its potential importance. This study presents the draft genome sequence of S. carnicancri strain Crm(T) and its annotation. The 2,673,309 base pair genome contained 2,700 protein-coding genes and 78 RNA genes with an average G+C content of 47.93 mol%. It…

Read More »

Sunday, July 7, 2019

Draft genome of Spiribacter salinus M19-40, an abundant gammaproteobacterium in aquatic hypersaline environments.

We have previously used a de novo metagenomic assembly approach to describe the presence of an abundant gammaproteobacterium comprising nearly 15% of the microbial community in an intermediate salinity solar saltern pond. We have obtained this microbe in pure culture and describe the genome sequencing of the halophilic photoheterotrophic microbe, Spiribacter salinus M19-40.

Read More »

Sunday, July 7, 2019

Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium.

Thalassosaline waters produced by the concentration of seawater are widespread and common extreme aquatic habitats. Their salinity varies from that of sea water (ca. 3.5%) to saturation for NaCl (ca. 37%). Obviously the microbiota varies dramatically throughout this range. Recent metagenomic analysis of intermediate salinity waters (19%) indicated the presence of an abundant and yet undescribed gamma-proteobacterium. Two strains belonging to this group have been isolated from saltern ponds of intermediate salinity in two Spanish salterns and were named “Spiribacter”.The genomes of two isolates of “Spiribacter” have been fully sequenced and assembled. The analysis of metagenomic datasets indicates that microbes…

Read More »

1 2

Subscribe for blog updates:

Archives