Menu
July 7, 2019  |  

Draft genome sequence of Ustilago trichophora RK089, a promising malic acid producer.

The basidiomycetous smut fungus Ustilago trichophora RK089 produces malate from glycerol. De novo genome sequencing revealed a 20.7-Mbp genome (301 gap-closed contigs, 246 scaffolds). A comparison to the genome of Ustilago maydis 521 revealed all essential genes for malate production from glycerol contributing to metabolic engineering for improving malate production. Copyright © 2016 Zambanini et al.


July 7, 2019  |  

Distinct Salmonella enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings.

An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.


July 7, 2019  |  

Draft genome sequence of Escherichia coli S51, a chicken isolate harboring a chromosomally encoded mcr-1 gene.

We present the draft genome of Escherichia coli S51, a colistin-resistant extended-spectrum ß-lactamase-producing strain isolated in 2015 from raw chicken meat imported from Germany. Assembly and annotation of this draft genome resulted in a 4,994,918-bp chromosome and revealed a chromosomally encoded mcr-1 gene responsible for the colistin resistance of the strain. Copyright © 2016 Zurfluh et al.


July 7, 2019  |  

Genome sequence of Arenibacter algicola strain TG409, a hydrocarbon-degrading bacterium associated with marine eukaryotic phytoplankton.

Arenibacter algicola strain TG409 was isolated from Skeletonema costatum and exhibits the ability to utilize polycyclic aromatic hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 5,550,230 bp with 4,722 genes and an average G+C content of 39.7%. Copyright © 2016 Gutierrez et al.


July 7, 2019  |  

Full-genome sequence of Escherichia coli K-15KW01, a uropathogenic E. coli B2 sequence type 127 isolate harboring a chromosomally carried blaCTX-M-15 gene.

We present here the full-genome sequence of Escherichia coli K-15KW01, an extended-spectrum-ß-lactamase-producing uropathogenic strain. Assembly and annotation of the draft genome resulted in a 5,154,641-bp chromosome and revealed a chromosomally contained blaCTX-M-15 gene embedded at the right-hand extremity of an ISEcp1 element in a plasmid-like structure (36,907 bp). Copyright © 2016 Zurfluh et al.


July 7, 2019  |  

Permanent improved high-quality draft genome sequence of Nocardia casuarinae strain BMG51109, an endophyte of actinorhizal root nodules of Casuarina glauca.

Here, we report the first genome sequence of a Nocardia plant endophyte, N. casuarinae strain BMG51109, isolated from Casuarina glauca root nodules. The improved high-quality draft genome sequence contains 8,787,999 bp with a 68.90% GC content and 7,307 predicted protein-coding genes. Copyright © 2016 Ghodhbane-Gtari et al.


July 7, 2019  |  

Draft genome sequence of two monosporidial lines of the Karnal bunt fungus Tilletia indica Mitra (PSWKBGH-1 and PSWKBGH-2).

Karnal bunt disease caused by the fungus Tilletia indica Mitra is a serious concern due to strict quarantines affecting international trade of wheat. We announce here the first draft assembly of two monosporidial lines, PSWKBGH-1 and -2, of this fungus, having approximate sizes of 37.46 and 37.21 Mbp, respectively. Copyright © 2016 Sharma et al.


July 7, 2019  |  

The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae.

Alkaloid accumulation in plants is activated in response to stress, is limited in distribution and specific alkaloid repertoires are variable across taxa. Rauvolfioideae (Apocynaceae, Gentianales) represents a major center of structural expansion in the monoterpenoid indole alkaloids (MIAs) yielding thousands of unique molecules including highly valuable chemotherapeutics. The paucity of genome-level data for Apocynaceae precludes a deeper understanding of MIA pathway evolution hindering the elucidation of remaining pathway enzymes and the improvement of MIA availability in planta or in vitro. We sequenced the nuclear genome of Rhazya stricta (Apocynaceae, Rauvolfioideae) and present this high quality assembly in comparison with that of coffee (Rubiaceae, Coffea canephora, Gentianales) and others to investigate the evolution of genome-scale features. The annotated Rhazya genome was used to develop the community resource, RhaCyc, a metabolic pathway database. Gene family trees were constructed to identify homologs of MIA pathway genes and to examine their evolutionary history. We found that, unlike Coffea, the Rhazya lineage has experienced many structural rearrangements. Gene tree analyses suggest recent, lineage-specific expansion and diversification among homologs encoding MIA pathway genes in Gentianales and provide candidate sequences with the potential to close gaps in characterized pathways and support prospecting for new MIA production avenues.


July 7, 2019  |  

Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum.

Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism’s genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism’s defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated f6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism’s restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism’s central metabolism within the context of metabolic engineering is provided.


July 7, 2019  |  

Genome sequence and analysis of the Japanese morning glory Ipomoea nil.

Ipomoea is the largest genus in the family Convolvulaceae. Ipomoea nil (Japanese morning glory) has been utilized as a model plant to study the genetic basis of floricultural traits, with over 1,500 mutant lines. In the present study, we have utilized second- and third-generation-sequencing platforms, and have reported a draft genome of I. nil with a scaffold N50 of 2.88?Mb (contig N50 of 1.87?Mb), covering 98% of the 750?Mb genome. Scaffolds covering 91.42% of the assembly are anchored to 15 pseudo-chromosomes. The draft genome has enabled the identification and cataloguing of the Tpn1 family transposons, known as the major mutagen of I. nil, and analysing the dwarf gene, CONTRACTED, located on the genetic map published in 1956. Comparative genomics has suggested that a whole genome duplication in Convolvulaceae, distinct from the recent Solanaceae event, has occurred after the divergence of the two sister families.


July 7, 2019  |  

Application of long sequence reads to improve genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7.

We and others have shown the utility of long sequence reads to improve genome assembly quality. In this study, we generated PacBio DNA sequence data to improve the assemblies of draft genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7. Copyright © 2016 Utturkar et al.


July 7, 2019  |  

Draft genome sequence of the extremely halophilic Halorubrum sp. SAH-A6 isolated from rock salts of the Danakil depression, Ethiopia.

The draft genome sequence of Halorubrum sp. SAH-A6, isolated from commercial rock salts of the Danakil depression, Ethiopia. The genome comprised 3,325,770 bp, with the G + C content of 68.0%. The strain has many genes which are responsible for secondary metabolites biosynthesis, transport and catabolism as compared to other Halorubrum archaea members. Abundant genes responsible for numerous transport systems, solute accumulation, and aromatic/sulfur decomposition were detected. The first genomic analysis encourages further research on comparative genomics, and biotechnological applications. The NCBI accession number for this genome is SAMN04278861 and ID: 4278861 and strain deposited with accession number KCTC 43215.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.