Menu
July 7, 2019  |  

Draft genome sequence of the environmentally isolated Acinetobacter pittii strain IPK_TSA6.1.

Acinetobacter pittii is an opportunistic pathogen frequently isolated from Acinetobacter infections other than those from Acinetobacter baumannii Multidrug resistance in A. pittii, including resistance to carbapenems, has been increasingly reported worldwide. Here, we report the 4.14-Mbp draft genome sequence of A. pittii IPK_TSA6.1 that was isolated from a nonhospital setting. Copyright © 2016 Lee and Jang.


July 7, 2019  |  

Genome sequence of a commensal bacterium, Enterococcus faecalis CBA7120, isolated from a Korean fecal sample.

Enterococcus faecalis, the type strain of the genus Enterococcus, is not only a commensal bacterium in the gastrointestinal tract in vertebrates and invertebrates, but also causes serious disease as an opportunistic pathogen. To date, genome sequences have been published for over four hundred E. faecalis strains; however, pathogenicity of these microbes remains complicated. To increase our knowledge of E. faecalis virulence factors, we isolated strain CBA7120 from the feces of an 81-year-old female from the Republic of Korea and performed a comparative genomic analysis.The genome sequence of E. faecalis CBA7120 is 3,134,087 bp in length, with a G + C content of 37.35 mol%, and is comprised of four contigs with an N50 value of 2,922,046 bp. The genome showed high similarity with other strains of E. faecalis, including OG1RF, T13, 12107 and T20, based on OrthoANI values. Strain CBA7120 contains 374 pan-genome orthologous groups (POGs) as singletons, including “Phages, Prophages, Transposable elements, Plasmids,” “Carbohydrates,” “DNA metabolism,” and “Virulence, Disease and Defense” subsystems. Genes related to multidrug resistance efflux pumps were annotated in the genome.The comparative genomic analysis of E. faecalis strains presented in this study was performed using a variety of analysis methods and will facilitate future identification of hypothetical proteins.


July 7, 2019  |  

The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance.

The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is among the 100 worst invasive species in the world. As one of the most important crop pests and virus vectors, B. tabaci causes substantial crop losses and poses a serious threat to global food security. We report the 615-Mb high-quality genome sequence of B. tabaci Middle East-Asia Minor 1 (MEAM1), the first genome sequence in the Aleyrodidae family, which contains 15,664 protein-coding genes. The B. tabaci genome is highly divergent from other sequenced hemipteran genomes, sharing no detectable synteny. A number of known detoxification gene families, including cytochrome P450s and UDP-glucuronosyltransferases, are significantly expanded in B. tabaci. Other expanded gene families, including cathepsins, large clusters of tandemly duplicated B. tabaci-specific genes, and phosphatidylethanolamine-binding proteins (PEBPs), were found to be associated with virus acquisition and transmission and/or insecticide resistance, likely contributing to the global invasiveness and efficient virus transmission capacity of B. tabaci. The presence of 142 horizontally transferred genes from bacteria or fungi in the B. tabaci genome, including genes encoding hopanoid/sterol synthesis and xenobiotic detoxification enzymes that are not present in other insects, offers novel insights into the unique biological adaptations of this insect such as polyphagy and insecticide resistance. Interestingly, two adjacent bacterial pantothenate biosynthesis genes, panB and panC, have been co-transferred into B. tabaci and fused into a single gene that has acquired introns during its evolution.The B. tabaci genome contains numerous genetic novelties, including expansions in gene families associated with insecticide resistance, detoxification and virus transmission, as well as numerous horizontally transferred genes from bacteria and fungi. We believe these novelties likely have shaped B. tabaci as a highly invasive polyphagous crop pest and efficient vector of plant viruses. The genome serves as a reference for resolving the B. tabaci cryptic species complex, understanding fundamental biological novelties, and providing valuable genetic information to assist the development of novel strategies for controlling whiteflies and the viruses they transmit.


July 7, 2019  |  

Serinibacter

The genus Serinibacter belongs, based on the phylogenetic analysis of the nearly full-length 16S rRNA gene, to the Beutenbergiaceae together with the genera Beutenbergia, Salana, and Miniimonas. The two species of the genus Serinibacter shared 99.6% 16S rRNA gene sequence similarity but low DNA DNA relatedness. Cells are irregular rods, Gram-stain positive, not acid-fast. Endospores are not formed. Nonmotile. Aerobic to anaerobic. Oxidase-negative, catalase-positive. The peptidoglycan type is A4a with an l-Ser residue at position 1 of the peptide subunit. The acyl type is acetyl. The major cell-wall sugar is galactose. The predominant menaquinone is MK-8(H4). The major polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, and unidentified phospholipids. Phosphatidylethanolamine is absent. The cellular fatty acid profile is dominated by the occurrence of iso- and anteiso-branched-chain acids. Mycolic acids are absent. The genomic G+C content is 70.7 to 72.8 mol%.


July 7, 2019  |  

Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes.

Buckwheat (Fagopyrum esculentum Moench; 2n = 2x = 16) is a nutritionally dense annual crop widely grown in temperate zones. To accelerate molecular breeding programmes of this important crop, we generated a draft assembly of the buckwheat genome using short reads obtained by next-generation sequencing (NGS), and constructed the Buckwheat Genome DataBase. After assembling short reads, we determined 387,594 scaffolds as the draft genome sequence (FES_r1.0). The total length of FES_r1.0 was 1,177,687,305 bp, and the N50 of the scaffolds was 25,109 bp. Gene prediction analysis revealed 286,768 coding sequences (CDSs; FES_r1.0_cds) including those related to transposable elements. The total length of FES_r1.0_cds was 212,917,911 bp, and the N50 was 1,101 bp. Of these, the functions of 35,816 CDSs excluding those for transposable elements were annotated by BLAST analysis. To demonstrate the utility of the database, we conducted several test analyses using BLAST and keyword searches. Furthermore, we used the draft genome as a reference sequence for NGS-based markers, and successfully identified novel candidate genes controlling heteromorphic self-incompatibility of buckwheat. The database and draft genome sequence provide a valuable resource that can be used in efforts to develop buckwheat cultivars with superior agronomic traits.© The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 7, 2019  |  

Genome sequence of Galleria mellonella(greater wax moth).

The larvae of the greater wax moth,Galleria mellonella, are pests of active beehives. In infection biology, these larvae are playing a more and more attractive role as an invertebrate host model. Here, we report on the first genome sequence ofGalleria mellonella. Copyright © 2018 Lange et al.


July 7, 2019  |  

Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm.

Ganoderma boninense is the dominant fungal pathogen of basal stem rot (BSR) disease on Elaeis guineensis We sequenced the nuclear genome of mycelia using both Illumina and Pacific Biosciences platforms for assembly of scaffolds. The draft genome comprised 79.24?Mb, 495 scaffolds, and 26,226 predicted coding sequences. Copyright © 2018 Utomo et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.