Menu
April 21, 2020  |  

High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution.

Targeted PCR amplification and high-throughput sequencing (amplicon sequencing) of 16S rRNA gene fragments is widely used to profile microbial communities. New long-read sequencing technologies can sequence the entire 16S rRNA gene, but higher error rates have limited their attractiveness when accuracy is important. Here we present a high-throughput amplicon sequencing methodology based on PacBio circular consensus sequencing and the DADA2 sample inference method that measures the full-length 16S rRNA gene with single-nucleotide resolution and a near-zero error rate. In two artificial communities of known composition, our method recovered the full complement of full-length 16S sequence variants from expected community members without residual errors. The measured abundances of intra-genomic sequence variants were in the integral ratios expected from the genuine allelic variants within a genome. The full-length 16S gene sequences recovered by our approach allowed Escherichia coli strains to be correctly classified to the O157:H7 and K12 sub-species clades. In human fecal samples, our method showed strong technical replication and was able to recover the full complement of 16S rRNA alleles in several E. coli strains. There are likely many applications beyond microbial profiling for which high-throughput amplicon sequencing of complete genes with single-nucleotide resolution will be of use. © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.


April 21, 2020  |  

Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3.

To date, clinical sequencing has focused on genomic DNA using targeted panels and exome sequencing. Sequencing of a large hypertrophic cardiomyopathy (HCM) cohort revealed that positive identification of a disease-associated variant was returned in only 32% of patients, with an additional 15% receiving inconclusive results. When genome sequencing fails to reveal causative variants, the transcriptome may provide additional diagnostic clarity. A recent study examining patients with genetically undiagnosed muscle disorders found that RNA sequencing, when used as a complement to exome and whole genome sequencing, had an overall diagnosis rate of 35%.


April 21, 2020  |  

Application of long read sequencing to determine expressed antigen diversity in Trypanosoma brucei infections.

Antigenic variation is employed by many pathogens to evade the host immune response, and Trypanosoma brucei has evolved a complex system to achieve this phenotype, involving sequential use of variant surface glycoprotein (VSG) genes encoded from a large repertoire of ~2,000 genes. T. brucei express multiple, sometimes closely related, VSGs in a population at any one time, and the ability to resolve and analyse this diversity has been limited. We applied long read sequencing (PacBio) to VSG amplicons generated from blood extracted from batches of mice sacrificed at time points (days 3, 6, 10 and 12) post-infection with T. brucei TREU927. The data showed that long read sequencing is reliable for resolving variant differences between VSGs, and demonstrated that there is significant expressed diversity (449 VSGs detected across 20 mice) and across the timeframe of study there was a clear semi-reproducible pattern of expressed diversity (median of 27 VSGs per sample at day 3 post infection (p.i.), 82 VSGs at day 6 p.i., 187 VSGs at day 10 p.i. and 132 VSGs by day 12 p.i.). There was also consistent detection of one VSG dominating expression across replicates at days 3 and 6, and emergence of a second dominant VSG across replicates by day 12. The innovative application of ecological diversity analysis to VSG reads enabled characterisation of hierarchical VSG expression in the dataset, and resulted in a novel method for analysing such patterns of variation. Additionally, the long read approach allowed detection of mosaic VSG expression from very few reads-the earliest in infection that such events have been detected. Therefore, our results indicate that long read analysis is a reliable tool for resolving diverse gene expression profiles, and provides novel insights into the complexity and nature of VSG expression in trypanosomes, revealing significantly higher diversity than previously shown and the ability to identify mosaic gene formation early during the infection process.


April 21, 2020  |  

FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control.

Although messenger RNAs are key molecules for understanding life, until now, no method has existed to determine the full-length sequence of endogenous mRNAs including their poly(A) tails. Moreover, although non-A nucleotides can be incorporated in poly(A) tails, there also exists no method to accurately sequence them. Here, we present full-length poly(A) and mRNA sequencing (FLAM-seq), a rapid and simple method for high-quality sequencing of entire mRNAs. We report a complementary DNA library preparation method coupled to single-molecule sequencing to perform FLAM-seq. Using human cell lines, brain organoids and Caenorhabditis elegans we show that FLAM-seq delivers high-quality full-length mRNA sequences for thousands of different genes per sample. We find that 3′ untranslated region length is correlated with poly(A) tail length, that alternative polyadenylation sites and alternative promoters for the same gene are linked to different tail lengths, and that tails contain a substantial number of cytosines.


April 21, 2020  |  

Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication.

L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3′-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Ka inhibitors.

Activating mutations in PIK3CA are frequent in human breast cancer, and phosphoinositide 3-kinase alpha (PI3Ka) inhibitors have been approved for therapy. To characterize determinants of sensitivity to these agents, we analyzed PIK3CA-mutant cancer genomes and observed the presence of multiple PIK3CA mutations in 12 to 15% of breast cancers and other tumor types, most of which (95%) are double mutations. Double PIK3CA mutations are in cis on the same allele and result in increased PI3K activity, enhanced downstream signaling, increased cell proliferation, and tumor growth. The biochemical mechanisms of dual mutations include increased disruption of p110a binding to the inhibitory subunit p85a, which relieves its catalytic inhibition, and increased p110a membrane lipid binding. Double PIK3CA mutations predict increased sensitivity to PI3Ka inhibitors compared with single-hotspot mutations.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

Extreme resistance to Potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor.

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Precise therapeutic gene correction by a simple nuclease-induced double-stranded break.

Current programmable nuclease-based methods (for example, CRISPR-Cas9) for the precise correction of a disease-causing genetic mutation harness the homology-directed repair pathway. However, this repair process requires the co-delivery of an exogenous DNA donor to recode the sequence and can be inefficient in many cell types. Here we show that disease-causing frameshift mutations that result from microduplications can be efficiently reverted to the wild-type sequence simply by generating a DNA double-stranded break near the centre of the duplication. We demonstrate this in patient-derived cell lines for two diseases: limb-girdle muscular dystrophy type 2G (LGMD2G)1 and Hermansky-Pudlak syndrome type 1 (HPS1)2. Clonal analysis of inducible pluripotent stem (iPS) cells from the LGMD2G cell line, which contains a mutation in TCAP, treated with the Streptococcus pyogenes Cas9 (SpCas9) nuclease revealed that about 80% contained at least one wild-type TCAP allele; this correction also restored TCAP expression in LGMD2G iPS cell-derived myotubes. SpCas9 also efficiently corrected the genotype of an HPS1 patient-derived B-lymphoblastoid cell line. Inhibition of polyADP-ribose polymerase 1 (PARP-1) suppressed the nuclease-mediated collapse of the microduplication to the wild-type sequence, confirming that precise correction is mediated by the microhomology-mediated end joining (MMEJ) pathway. Analysis of editing by SpCas9 and Lachnospiraceae bacterium ND2006 Cas12a (LbCas12a) at non-pathogenic 4-36-base-pair microduplications within the genome indicates that the correction strategy is broadly applicable to a wide range of microduplication lengths and can be initiated by a variety of nucleases. The simplicity, reliability and efficacy of this MMEJ-based therapeutic strategy should permit the development of nuclease-based gene correction therapies for a variety of diseases that are associated with microduplications.


April 21, 2020  |  

Immunogenetic factors driving formation of ultralong VH CDR3 in Bos taurus antibodies.

The antibody repertoire of Bos taurus is characterized by a subset of variable heavy (VH) chain regions with ultralong third complementarity determining regions (CDR3) which, compared to other species, can provide a potent response to challenging antigens like HIV env. These unusual CDR3 can range to over seventy highly diverse amino acids in length and form unique ß-ribbon ‘stalk’ and disulfide bonded ‘knob’ structures, far from the typical antigen binding site. The genetic components and processes for forming these unusual cattle antibody VH CDR3 are not well understood. Here we analyze sequences of Bos taurus antibody VH domains and find that the subset with ultralong CDR3 exclusively uses a single variable gene, IGHV1-7 (VHBUL) rearranged to the longest diversity gene, IGHD8-2. An eight nucleotide duplication at the 3′ end of IGHV1-7 encodes a longer V-region producing an extended F ß-strand that contributes to the stalk in a rearranged CDR3. A low amino acid variability was observed in CDR1 and CDR2, suggesting that antigen binding for this subset most likely only depends on the CDR3. Importantly a novel, potentially AID mediated, deletional diversification mechanism of the B. taurus VH ultralong CDR3 knob was discovered, in which interior codons of the IGHD8-2 region are removed while maintaining integral structural components of the knob and descending strand of the stalk in place. These deletions serve to further diversify cysteine positions, and thus disulfide bonded loops. Hence, both germline and somatic genetic factors and processes appear to be involved in diversification of this structurally unusual cattle VH ultralong CDR3 repertoire.


April 21, 2020  |  

Full-length mRNA sequencing in Saccharina japonica and identification of carbonic anhydrase genes

The carbonic anhydrases (CAs) are a group of enzymes that play an important role in the absorption and transportation of CO2 in Saccharina japonica. They are encoded by a superfamily of genes with seven subtypes that are unrelated in sequence but share conserved function in catalyzing the reversible conversion of CO2 and HCO3-. Here we have characterized the CA members in the transcriptome of S. japonica using Single-molecule real-time (SMRT) sequencing technology. Approximately 9830.4 megabases from 5,028,003 quality subreads were generated, and they were assembled into 326,512 full-length non-chimeric (FLNC) reads, with an average flnc read length of 2181 bp. After removing redundant sequences, 79,010 unique transcripts were obtained of which 38,039 transcripts were successfully annotated. From the full-length transcriptome, we have identified 7 full-length cDNA sequences for CA genes (4 a-CAs, 1 ß-CAs and 2 ?-CAs) and assessed for their potential functions based on phylogenetic analysis. Characterizations of CAs will provide the ground for future studies to determine the involvement of CAs in inorganic carbon absorption and transportation in S. japonica.


April 21, 2020  |  

Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment.

High-throughput studies of microbial communities suggest that Archaea are a widespread component of microbial diversity in various ecosystems. However, proper quantification of archaeal diversity and community ecology remains limited, as sequence coverage of Archaea is usually low owing to the inability of available prokaryotic primers to efficiently amplify archaeal compared to bacterial rRNA genes. To improve identification and quantification of Archaea, we designed and validated the utility of several primer pairs to efficiently amplify archaeal 16S rRNA genes based on up-to-date reference genes. We demonstrate that several of these primer pairs amplify phylogenetically diverse Archaea with high sequencing coverage, outperforming commonly used primers. Based on comparing the resulting long 16S rRNA gene fragments with public databases from all habitats, we found several novel family- to phylum-level archaeal taxa from topsoil and surface water. Our results suggest that archaeal diversity has been largely overlooked due to the limitations of available primers, and that improved primer pairs enable to estimate archaeal diversity more accurately. © 2018 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Potential of TLR-gene diversity in Czech indigenous cattle for resistance breeding as revealed by hybrid sequencing

A production herd of Czech Simmental cattle (Czech Red Pied, CRP), the conserved subpopulation of this breed, and the ancient local breed Czech Red cattle (CR) were screened for diversity in the antibacterial toll-like receptors (TLRs), which are members of the innate immune system. Polymerase chain reaction (PCR) amplicons of TLR1, TLR2, TLR4, TLR5, and TLR6 from pooled DNA samples were sequenced with PacBio technology, with 3–5×?coverage per gene per animal. To increase the reliability of variant detection, the gDNA pools were sequenced in parallel with the Illumina X-ten platform at low coverage (60× per gene). The diversity in conserved CRP and CR was similar to the diversity in conserved and modern CRP, representing 76.4?% and 70.9?% of its variants, respectively. Sixty-eight (54.4?%) polymorphisms in the five TLR genes were shared by the two breeds, whereas 38 (30.4?%) were specific to the production herd of CRP; 4 (3.2?%) were specific to the broad CRP population; 7 (5.6?%) were present in both conserved populations; 5 (4.0?%) were present solely for the conserved CRP; and 3 (2.4?%) were restricted to CR. Consequently, gene pool erosion related to intensive breeding did not occur in Czech Simmental cattle. Similarly, no considerable consequences were found from known bottlenecks in the history of Czech Red cattle. On the other hand, the distinctness of the conserved populations and their potential for resistance breeding were only moderate. This relationship might be transferable to other non-abundant historical cattle breeds that are conserved as genetic resources. The estimates of polymorphism impact using Variant Effect Predictor and SIFT software tools allowed for the identification of candidate single-nucleotide polymorphisms (SNPs) for association studies related to infection resistance and targeted breeding. Knowledge of TLR-gene diversity present in Czech Simmental populations may aid in the potential transfer of variant characteristics from other breeds.


April 21, 2020  |  

Varieties of immunity activities and gut contents in tilapia with seasonal changes.

We performed 16S rDNA sequencing of tilapia fecal samples to analyze changes in tilapia gut contents after cultivation of the fish in the presence of sandwich-like floating beds of Chinese medicinal herbs (5 and 10% planting-areas; 5% Polygonum cuspidatum). The interactive effects between water quality and blood and hepatic pro- and anti-inflammatory concentrations were also assessed. Our results showed that the water quality (i.e., NO3-N, NO2-N, TP removal rates) improved, and the abundance of Chloroflexi and Cyanobacteria increased. The abundance of Bacteroidetes, Verrucomicrobia, Saccharibacteria, and Actinobacteria showed both significant seasonal decreases and increases in the presence of P. cuspidatum (increases in August and decreases in July). Fish blood and hepatic IL-10 and IFN-? levels (together with fish sampled in September) significantly increased in the P. cuspidatum group sampled in August, while those of TNF-a (10% sandwich-like, P. cuspidatum), IL-1ß (P. cuspidatum), IL-8 (5% sandwich-like in September, S905S) significantly decreased. Heat shock proteins 60 and 70 levels significantly increased in the P. cuspidatum group, and complement C3 and C4 concentrations significantly increased in S905S. This study demonstrated that enhanced immunity through the regulation of pro- and anti-inflammatory proteins was sustained throughout development until harvest, particularly in fish grown with P. cuspidatum.Copyright © 2019. Published by Elsevier Ltd.


April 21, 2020  |  

Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology.

In present study, single molecule-real time sequencing technology was used to obtain a validated set of microsatellite markers for application in population genetics of the primitive fish, Chitala chitala. Assembly of circular consensus sequencing reads resulted into 1164 sequences which contained 2005 repetitive motifs. A total of 100 sequences were used for primer designing and amplification yielded a set of 28 validated polymorphic markers. These loci were used to genotype n?=?72 samples from three distant riverine populations of India, namely Son, Satluj and Brahmaputra, for determining intraspecific genetic variation. The microsatellite loci exhibited high level of polymorphism with PIC values ranging from 0.281 to 0.901. The genetic parameters revealed that mean heterozygosity ranged from 0.6802 to 0.6826 and the populations were found to be genetically diverse (Fst 0.03-0.06). This indicated the potential application of these microsatellite marker set that can used for stock characterization of C. chitala, in the wild. These newly developed loci were assayed for cross transferability in another notopterid fish, Notopterus notopterus.


April 21, 2020  |  

Genome-wide analysis of methyl jasmonate-regulated isoform expression in the medicinal plant Andrographis paniculata

Alternative splicing can increase the complexity of the transcriptome and proteome. The most common mechanism of alternative splicing in plants is intron retention (IR), and the expression levels of IR isoforms can be differentially regulated when facing abiotic stress. The full-length transcriptome of the medicinal plant Andrographis paniculata was sequenced using both Illumina- and SMRT-based RNA-seq and a total of 4846 IR isoforms were identified. The expression levels of 310/296 IR isoforms were up-regulated, and 629/659 IR isoforms were down-regulated at 24?h/48?h after methyl jasmonate (MeJA) treatment, respectively. In the (E,E,E)-geranylgeranyl diphosphate (GGPP) biosynthesis pathway which contributes to the andrographolide biosynthesis, eight genes were alternatively spliced, resulting in a total of 25 isoforms, of which 12 are IR isoforms. After MeJA treatment, four of these IR isoforms showed significant differential expression. RT-PCR and qRT-PCR experiments confirmed the existence of five IR isoforms. This research deepens our understanding of the A. paniculata transcriptome and can assist in the future study of andrographolide biosynthesis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.