Menu
July 7, 2019  |  

Complete genome sequence of a psychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer.

Arthrobacter strain A3, a psychotrophic bacterium isolated from the Tian Shan Mountain of China, can degrade the cellulose and synthesis the long-chain hydrocarbons efficiently in low temperature. Here we report the complete genome sequence of this bacterium. The complete genome sequence of Arthrobacter strain A3, consisting of a cycle chromosome with a size of 4.26 Mbp and a cycle plasmid with a size of 194kbp. In this genome, a hydrocarbon biosynthesis gene cluster (oleA, oleB/oleC and oleD) was identified. To resistant the extreme environment, this strain contains a unique mycothiol-biosynthetic pathway (mshA-D), which has not been found in other Arthrobacter species before. The availability of this genome sequence allows us to investigate the genetic basis of adaptation to growth in a nutrient-poor permafrost environment and to evaluate of the biofuel-synthetic potential of this species. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

Genome sequence of the nicotine-degrading Agrobacterium tumefaciens S33.

Agrobacterium tumefaciens S33 is capable of growing with nicotine as the sole source of carbon and nitrogen, and has the potential to dispose of tobacco wastes and transform nicotine into functionalized pyridines intermediates, which are important precursors for some valuable drugs and insecticides. Here we report the complete genome sequence of strain S33 and predict the gene cluster involved in nicotine catabolism according to the annotation. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

De novo assembly of complete genome sequence of Planococcus kocurii ATCC 43650(T), a potential plant growth promoting bacterium.

Planococcus kocurii ATCC 43650(T) is a halotolerant and psychrotolerant bacterium isolated from the skin of a North sea cod. Here, we present the first complete genome and annotation of P. kocurii ATCC 43650(T), identifying its potential as a plant growth promoting bacterium and its capability in the biosynthesis of butanol. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by (13)C metabolic flux analysis and whole genome sequencing.

We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Draft genome sequences of two strains of Paenibacillus glucanolyticus with the ability to degrade lignocellulose.

Paenibacillus glucanolyticus 5162, a bacterium isolated from soil, and Paenibacillus glucanolyticus SLM1, a bacterium isolated from pulp mill waste, can utilize cellulose, hemicellulose and lignin as sole carbon sources for growth. These two strains of Paenibacillus glucanolyticus were sequenced using PacBio and Illumina MiSeq technologies. Copyright © 2016 Mathews et al.


July 7, 2019  |  

Comparative genomic analysis of isoproturon-mineralizing sphingomonads reveals the isoproturon catabolic mechanism.

The worldwide use of the phenylurea herbicide, isoproturon (IPU), has resulted in considerable concern about its environmental fate. Although many microbial metabolites of IPU are known and IPU-mineralizing bacteria have been isolated, the molecular mechanism of IPU catabolism has not been elucidated yet. In this study, complete genes that encode the conserved IPU catabolic pathway were revealed, based on comparative analysis of the genomes of three IPU-mineralizing sphingomonads and subsequent experimental validation. The complete genes included a novel hydrolase gene ddhA, which is responsible for the cleavage of the urea side chain of the IPU demethylated products; a distinct aniline dioxygenase gene cluster adoQTA1A2BR, which has a broad substrate range; and an inducible catechol meta-cleavage pathway gene cluster adoXEGKLIJC. Furthermore, the initial mono-N-demethylation genes pdmAB were further confirmed to be involved in the successive N-demethylation of the IPU mono-N-demethylated product. These IPU-catabolic genes were organized into four transcription units and distributed on three plasmids. They were flanked by multiple mobile genetic elements and highly conserved among IPU-mineralizing sphingomonads. The elucidation of the molecular mechanism of IPU catabolism will enhance our understanding of the microbial mineralization of IPU and provide insights into the evolutionary scenario of the conserved IPU-catabolic pathway. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Draft genome sequence of Mycobacterium rufum JS14(T), a polycyclic-aromatic-hydrocarbon-degrading bacterium from petroleum-contaminated soil in Hawaii.

Mycobacterium rufum JS14(T) (=ATCC BAA-1377(T), CIP 109273(T), JCM 16372(T), DSM 45406(T)), a type strain of the species Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we describe the first genome sequence of strain JS14(T), with brief phenotypic characteristics. The genome is composed of 6,176,413 bp with 69.25 % G?+?C content and contains 5810 protein-coding genes with 54 RNA genes. The genome information on M. rufum JS14(T) will provide a better understanding of the complexity of bacterial catabolic pathways for degradation of specific chemicals.


July 7, 2019  |  

Salmonella degrades the host glycocalyx leading to altered infection and glycan remodeling.

Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p?


July 7, 2019  |  

Genome sequence of Arenibacter algicola strain TG409, a hydrocarbon-degrading bacterium associated with marine eukaryotic phytoplankton.

Arenibacter algicola strain TG409 was isolated from Skeletonema costatum and exhibits the ability to utilize polycyclic aromatic hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 5,550,230 bp with 4,722 genes and an average G+C content of 39.7%. Copyright © 2016 Gutierrez et al.


July 7, 2019  |  

Complete genome sequence of Pseudomonas citronellolis P3B5, a candidate for microbial phyllo-remediation of hydrocarbon-contaminated sites

Pseudomonas citronellolis is a Gram negative, motile gammaproteobacterium belonging to the order Pseudomonadales and the family Pseudomonadaceae. We isolated strain P3B5 from the phyllosphere of basil plants (Ocimum basilicum L.). Here we describe the physiology of this microorganism, its full genome sequence, and detailed annotation. The 6.95 Mbp genome contains 6071 predicted protein coding sequences and 96 RNA coding sequences. P. citronellolis has been the subject of many studies including the investigation of long-chain aliphatic compounds and terpene degradation. Plant leaves are covered by long-chain aliphates making up a waxy layer that is associated with the leaf cuticle. In addition, basil leaves are known to contain high amounts of terpenoid substances, hinting to a potential nutrient niche that might be exploited by P. citronellolis. Furthermore, the isolated strain exhibited resistance to several antibiotics. To evaluate the potential of this strain as source of transferable antibiotic resistance genes on raw consumed herbs we therefore investigated if those resistances are encoded on mobile genetic elements. The availability of the genome will be helpful for comparative genomics of the phylogenetically broad pseudomonads, in particular with the sequence of the P. citronellolis type strain PRJDB205 not yet publicly available. The genome is discussed with respect to a phyllosphere related lifestyle, aliphate and terpenoid degradation, and antibiotic resistance.


July 7, 2019  |  

Complete genome sequence of a bacterium representing a deep uncultivated lineage within the Gammaproteobacteria associated with the degradation of polycyclic aromatic hydrocarbons.

The bacterial strain TR3.2, representing a novel deeply branching lineage within the Gammaproteobacteria, was isolated and its genome sequenced. This isolate is the first cultivated representative of the previously described “Pyrene Group 2” (PG2) and represents a variety of environmental sequences primarily associated with petrochemical contamination and aromatic hydrocarbon degradation. Copyright © 2016 Singleton et al.


July 7, 2019  |  

The complete genome sequence of the nicotine-degrading bacterium Shinella sp. HZN7.

Nicotine is a natural alkaloid that is very toxic to humans. To eliminate the harmful effects of nicotine in the environment, biological methods employing microbes to degrade nicotine are required (Brandsch, 2006; Liu et al., 2015). Shinella sp. HZN7 can degrade nicotine efficiently via the variant of a pyridine and pyrrolidine pathways (VPP; Ma et al., 2013; Qiu et al., 2014, 2015). The main intermediates in this pathway include 6-hydroxy-nicotine, 6-hydroxy-N-methylmyosmine, 6-hydroxypseudooxynicotine, 6-hydroxy-3-succinoyl-pyridine, and 2,5-dihydroxypyridine. This strain is the first nicotine-degrading bacterium to be isolated from the genus Shinella.


July 7, 2019  |  

Borneol dehydrogenase from Pseudomonas sp. strain TCU-HL1 catalyzes the oxidation of (+)-borneol and its isomers to camphor.

Most plant-produced monoterpenes can be degraded by soil microorganisms. Borneol is a plant terpene that is widely used in traditional Chinese medicine. Neither microbial borneol dehydrogenase (BDH) nor a microbial borneol degradation pathway has been reported previously. One borneol-degrading strain, Pseudomonas sp. strain TCU-HL1, was isolated by our group. Its genome was sequenced and annotated. The genome of TCU-HL1 consists of a 6.2-Mbp circular chromosome and one circular plasmid, pTHL1 (12.6 kbp). Our results suggest that borneol is first converted into camphor by BDH in TCU-HL1 and is further decomposed through a camphor degradation pathway. The recombinant BDH was produced in the form of inclusion bodies. The apparent Km values of refolded recombinant BDH for (+)-borneol and (-)-borneol were 0.20 ± 0.01 and 0.16 ± 0.01 mM, respectively, and the kcat values for (+)-borneol and (-)-borneol were 0.75 ± 0.01 and 0.53 ± 0.01 s(-1), respectively. Two plant BDH genes have been reported previously. The kcat and kcat/Km values of lavender BDH are about 1,800-fold and 500-fold lower, respectively, than those of TCU-HL1 BDH.The degradation of borneol in a soil microorganism through a camphor degradation pathway is reported in this study. We also report a microbial borneol dehydrogenase. The kcat and kcat/Km values of lavender BDH are about 1,800-fold and 500-fold lower, respectively, than those of TCU-HL1 BDH. The indigenous borneol- and camphor-degrading strain isolated, Pseudomonas sp. strain TCU-HL1, reminds us of the time 100 years ago when Taiwan was the major producer of natural camphor in the world. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.