Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then…
Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome.After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51?N-6-methyladenines and 152?N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites…
The perpetual arms race between bacteria and phage has resulted in the evolution of efficient resistance systems that protect bacteria from phage infection. Such systems, which include the CRISPR-Cas and restriction-modification systems, have proven to be invaluable in the biotechnology and dairy industries. Here, we report on a six-gene cassette in Bacillus cereus which, when integrated into the Bacillus subtilis genome, confers resistance to a broad range of phages, including both virulent and temperate ones. This cassette includes a putative Lon-like protease, an alkaline phosphatase domain protein, a putative RNA-binding protein, a DNA methylase, an ATPase-domain protein, and a protein…
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this…
The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question of whether phage DNA modifications may also block attack by CRISPR-Cas9. We investigated phage T4 as a model system, where cytosine is replaced with glucosyl-hydroxymethylcytosine (glc-HMC). We first quantified the extent and distribution of covalent modifications in T4 DNA by single-molecule DNA sequencing and…
Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members…
Clostridium difficile contains many integrated and extrachromosomal genetic elements. In this study, we determined, annotated, and analyzed the complete genome of the C. difficile bacteriophage phiCDIF1296T using single-molecule real-time sequencing technology. To our knowledge, this represents the largest genome (131 kb) of a temperate C. difficile phage recognized so far. Copyright © 2015 Wittmann et al.
In this study, we sequenced the complete genome of the Clostridium difficile type strain DSM 1296(T). A combination of single-molecule real-time (SMRT) and Illumina sequencing technology revealed the presence of one chromosome and two extrachromosomal elements, the bacteriophage phiCDIF1296T and a putative plasmid-like structure harboring genes of another bacteriophage. Copyright © 2015 Riedel et al.
Restriction–modification (R-M) systems are able to methylate or cleave DNA depending on methylation status of their recognition site. It allows them to protect bacterial cells from invasion by foreign DNA. Comparative analysis of a large number of available bacterial genomes and methylomes clearly demonstrates that the role of R-M systems in bacteria is wider than only defense. R-M systems maintain heterogeneity of a bacterial population and are involved in adaptation of bacteria to change in their environmental conditions. R-M systems can be essential for host colonization by pathogenic bacteria. Phase variation and intragenomic recombinations are sources of the fast evolution…
Multi-resistant Achromobacter xylosoxidans has been recognized as an emerging pathogen causing nosocomially acquired infections during the last years. Phages as natural opponents could be an alternative to fight such infections. Bacteriophages against this opportunistic pathogen were isolated in a recent study. This study shows a molecular analysis of two podoviruses and reveals first insights into the genomic structure of Achromobacter phages so far.Growth curve experiments and adsorption kinetics were performed for both phages. Adsorption and propagation in cells were visualized by electron microscopy. Both phage genomes were sequenced with the PacBio RS II system based on single molecule, real-time (SMRT)…
BACKGROUND:So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return.RESULTS:Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which…
The Bacillus ACT group includes three important pathogenic species of Bacillus: anthracis, cereus and thuringiensis. We characterized three virulent bacteriophages, Bastille, W.Ph. and CP-51, that infect various strains of these three species. We have determined the complete genome sequences of CP-51, W.Ph. and Bastille, and their physical genome structures. The CP-51 genome sequence could only be obtained using a combination of conventional and second and third next generation sequencing technologies – illustrating the problems associated with sequencing highly modified DNA. We present evidence that the generalized transduction facilitated by CP-51 is independent of a specific genome structure, but likely due…
The dawn of next generation sequencing technologies has opened up exciting possibilities for whole genome sequencing of a plethora of organisms. The 2nd and 3rd generation sequencing technologies, based on cloning-free, massively parallel sequencing, have enabled the generation of a deluge of genomic sequences of both prokaryotic and eukaryotic origin in the last seven years. However, whole genome sequencing of bacterial viruses has not kept pace with this revolution, despite the fact that their genomes are orders of magnitude smaller in size compared with bacteria and other organisms. Sequencing phage genomes poses several challenges; (1) obtaining pure phage genomic material,…
Listeria monocytogenes is an important food-borne pathogen, and its bacteriophages find many uses in detection and biocontrol of its host. The novel broad-host-range virulent phage P70 has a unique morphology with an elongated capsid. Its genome sequence was determined by a hybrid sequencing strategy employing Sanger and PacBio techniques. The P70 genome contains 67,170 bp and 119 open reading frames (ORFs). Our analyses suggest that P70 represents an archetype of virus unrelated to other known Listeria bacteriophages.
Pathogenic clostridia typically produce toxins as virulence factors which cause severe diseases in both humans and animals. Whereas many clostridia like e.g., Clostridium perfringens, Clostridium botulinum or Clostridium tetani were shown to contain toxin-encoding plasmids, only toxin genes located on the chromosome were detected in Clostridioides difficile so far. In this study, we determined, annotated, and analyzed the complete genome of the bacteriophage phiSemix9P1 using single-molecule real-time sequencing technology (SMRT). To our knowledge, this represents the first C. difficile-associated bacteriophage genome that carries a complete functional binary toxin locus in its genome. Copyright © 2017 Elsevier B.V. All rights reserved.