Menu
July 7, 2019  |  

Four complete Paenibacillus larvae genome sequences.

Four complete genome sequences of genetically distinct Paenibacillus larvae strains have been determined. Pacific BioSciences single-molecule real-time (SMRT) sequencing technology was used as the sole method of sequence determination and assembly. The chromosomes exhibited a G+C content of 44.1 to 44.2% and a molecular size range of 4.29 to 4.67 Mbp. Copyright © 2017 Dingman.


July 7, 2019  |  

Complete genome sequence of Celeribacter marinus IMCC12053(T), the host strain of marine bacteriophage P12053L.

Isolated from coastal seawater from Yellow Sea of Korea, Celeribacter marinus IMCC12053 was used as the host bacterium for bacteriophage P12053L. Here we report the complete genome sequence of strain IMCC12053 for further study of the marine bacteriophage P12053L functional genes. Single molecule real-time technology (PacBio RSII) was used for the single circular chromosome that is 3,096,705 base pairs in length and the GC content is 56.24%. It contains 3155 ORFs with 45 tRNAs and 6 rRNAs genes. N(6)-methyladenosine patterns were also investigated for 32 unmethylated genes and intergenic regions that covered many regulators and phage genes as well as ribosomal RNA genes and tRNA genes. Cryptic N(4)-methylcytosine pattern was investigated to speculate GpC methylase activity throughout the genome. Comparative genomics with other Celeribacter genomes were carried out for polyaromatic hydrocarbon degradation, but there were no aromatic ring oxygenases in IMCC12053 when compared to Celeribacter indicus P73. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from Bangladesh

Background Antibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative. Method T4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus isolates were sequenced. Findings No adverse events attributable to oral phage application were observed (primary safety outcome). Fecal coliphage was increased in treated over control children, but the titers did not show substantial intestinal phage replication (secondary microbiology outcome). 60% of the children suffered from a microbiologically proven E. coli diarrhea; the most frequent diagnosis was ETEC infections. Bacterial co-pathogens were also detected. Half of the patients contained phage-susceptible E. coli colonies in the stool. E. coli represented less than 5% of fecal bacteria. Stool ETEC titers showed only a short-lived peak and were otherwise close to the replication threshold determined for T4 phage in vitro. An interim analysis after the enrollment of 120 patients showed no amelioration in quantitative diarrhea parameter by PT over standard care (tertiary clinical outcome). Stool microbiota was characterized by an overgrowth with Streptococcus belonging to the Streptococcus gallolyticus and Streptococcus salivarius species groups, their abundance correlated with quantitative diarrhea outcome, but genome sequencing did not identify virulence genes. Interpretation Oral coliphages showed a safe gut transit in children, but failed to achieve intestinal amplification and to improve diarrhea outcome, possibly due to insufficient phage coverage and too low E. coli pathogen titers requiring higher oral phage doses. More knowledge is needed on in vivo phage–bacterium interaction and the role of E. coli in childhood diarrhea for successful PT. Funding The study was supported by a grant from Nestlé Nutrition and Nestlé Health Science. The trial was registered with Identifier NCT00937274 at ClinicalTrials.gov.


July 7, 2019  |  

Extensive mobilome-driven genome diversification in mouse gut-associated Bacteroides vulgatus mpk.

Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.