Menu
July 7, 2019

High-quality draft genomes from Thermus caliditerrae YIM 77777 and T. tengchongensis YIM 77401, isolates from Tengchong, China.

The draft genomes of Thermus  tengchongensis YIM 77401 and T. caliditerrae YIM 77777 are 2,562,314 and 2,218,114 bp and encode 2,726 and 2,305 predicted genes, respectively. Gene content and growth experiments demonstrate broad metabolic capacity, including starch hydrolysis, thiosulfate oxidation, arsenite oxidation, incomplete denitrification, and polysulfide reduction. Copyright © 2016 Mefferd et al.


July 7, 2019

Genome sequence of Propionibacterium acidipropionici ATCC 55737.

Propionibacterium acidipropionici produces propionic acid as its main fermentation product. Traditionally derived from fossil fuels, environmental and sustainable issues have revived the interest in producing propionic acid using biological resources. Here, we present the closed sequence of Propionibacterium acidipropionici ATCC 55737, an efficient propionic acid producer. Copyright © 2016 Luna-Flores et al.


July 7, 2019

Complete genome sequence of Pseudomonas fluorescens LBUM636, a strain with biocontrol capabilities against late blight of potato.

Herein provided is the full-genome sequence of Pseudomonas fluorescens LBUM636. This strain is a plant growth-promoting rhizobacterium (PGPR) which produces phenazine-1-carboxylic acid, an antibiotic involved in the biocontrol of numerous plant pathogens, including late blight of potato caused by the plant pathogen Phytophthora infestans. Copyright © 2016 Morrison et al.


July 7, 2019

Microevolution of monophasic Salmonella Typhimurium during epidemic, United Kingdom, 2005-2010.

Microevolution associated with emergence and expansion of new epidemic clones of bacterial pathogens holds the key to epidemiologic success. To determine microevolution associated with monophasic Salmonella Typhimurium during an epidemic, we performed comparative whole-genome sequencing and phylogenomic analysis of isolates from the United Kingdom and Italy during 2005-2012. These isolates formed a single clade distinct from recent monophasic epidemic clones previously described from North America and Spain. The UK monophasic epidemic clones showed a novel genomic island encoding resistance to heavy metals and a composite transposon encoding antimicrobial drug resistance genes not present in other Salmonella Typhimurium isolates, which may have contributed to epidemiologic success. A remarkable amount of genotypic variation accumulated during clonal expansion that occurred during the epidemic, including multiple independent acquisitions of a novel prophage carrying the sopE gene and multiple deletion events affecting the phase II flagellin locus. This high level of microevolution may affect antigenicity, pathogenicity, and transmission.


July 7, 2019

Complete genome sequence of Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603.

Klebsiella quasipneumoniae subsp. similipneumoniae strain ATCC 700603, formerly known as K. pneumoniae K6, is known for producing extended-spectrum ß-lactamase (ESBL) enzymes that can hydrolyze oxyimino-ß-lactams, resulting in resistance to these drugs. We herein report the complete genome of strain ATCC 700603 and show that the ESBL genes are plasmid-encoded. Copyright © 2016 Elliott et al.


July 7, 2019

Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.

Single Molecule Real-Time (SMRT) sequencing technology and Oxford Nanopore technologies (ONT) produce reads over 10?kb in length, which have enabled high-quality genome assembly at an affordable cost. However, at present, long reads have an error rate as high as 10-15%. Complex and computationally intensive pipelines are required to assemble such reads.We present a new mapper, minimap and a de novo assembler, miniasm, for efficiently mapping and assembling SMRT and ONT reads without an error correction stage. They can often assemble a sequencing run of bacterial data into a single contig in a few minutes, and assemble 45-fold Caenorhabditis elegans data in 9?min, orders of magnitude faster than the existing pipelines, though the consensus sequence error rate is as high as raw reads. We also introduce a pairwise read mapping format and a graphical fragment assembly format, and demonstrate the interoperability between ours and current tools.https://github.com/lh3/minimap and https://github.com/lh3/miniasmhengli@broadinstitute.orgSupplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019

Whole genome DNA sequence analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS) to Salmonella subspecies enterica serotype Tennessee (S. Tennessee) to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana), which were also shot-gun sequenced. A whole genome single nucleotide polymorphism (SNP) analysis was performed using a maximum likelihood approach to infer phylogenetic relationships. Several monophyletic lineages of S. Tennessee with limited SNP variability were identified that recapitulated several food contamination events. S. Tennessee clades were separated from outgroup salmonellae by more than sixteen thousand SNPs. Intra-serovar diversity of S. Tennessee was small compared to the chosen outgroups (1,153 SNPs), suggesting recent divergence of some S. Tennessee clades. Analysis of all 1,153 SNPs structuring an S. Tennessee peanut butter outbreak cluster revealed that isolates from several food, plant, and clinical isolates were very closely related, as they had only a few SNP differences between them. SNP-based cluster analyses linked specific food sources to several clinical S. Tennessee strains isolated in separate contamination events. Environmental and clinical isolates had very similar whole genome sequences; no markers were found that could be used to discriminate between these sources. Finally, we identified SNPs within variable S. Tennessee genes that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks. Using WGS can delimit contamination sources for foodborne illnesses across multiple outbreaks and reveal otherwise undetected DNA sequence differences essential to the tracing of bacterial pathogens as they emerge.


July 7, 2019

Complete genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, two phylogenetically distinct probiotics.

Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.


July 7, 2019

Atypical Salmonella enterica serovars in murine and human infection models: Is it time to reassess our approach to the study of salmonellosis?

Nontyphoidal Salmonella species are globally disseminated pathogens and the predominant cause of gastroenteritis. The pathogenesis of salmonellosis has been extensively studied using in vivo murine models and cell lines typically challenged with Salmonella Typhimurium. Although serovars Enteritidis and Typhimurium are responsible for the most of human infections reported to the CDC, several other serovars also contribute to clinical cases of salmonellosis. Despite their epidemiological importance, little is known about their infection phenotypes. Here, we report the virulence characteristics and genomes of 10 atypical S. enterica serovars linked to multistate foodborne outbreaks in the United States. We show that the murine RAW 264.7 macrophage model of infection is unsuitable for inferring human relevant differences in nontyphoidal Salmonella infections whereas differentiated human THP-1 macrophages allowed these isolates to be further characterised in a more relevant, human context.


July 7, 2019

Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum.

The recently isolated strain L21-Fru-AB(T) represents moderately halophilic, obligately anaerobic and saccharolytic bacteria that thrive in the suboxic transition zones of hypersaline microbial mats. Phylogenetic analyses based on 16S rRNA genes, RpoB proteins and gene content indicated that strain L21-Fru-AB(T) represents a novel species and genus affiliated with a distinct phylum-level lineage originally designated Verrucomicrobia subdivision 5. A survey of environmental 16S rRNA gene sequences revealed that members of this newly recognized phylum are wide-spread and ecologically important in various anoxic environments ranging from hypersaline sediments to wastewater and the intestine of animals. Characteristic phenotypic traits of the novel strain included the formation of extracellular polymeric substances, a Gram-negative cell wall containing peptidoglycan and the absence of odd-numbered cellular fatty acids. Unusual metabolic features deduced from analysis of the genome sequence were the production of sucrose as osmoprotectant, an atypical glycolytic pathway lacking pyruvate kinase and the synthesis of isoprenoids via mevalonate. On the basis of the analyses of phenotypic, genomic and environmental data, it is proposed that strain L21-Fru-AB(T) and related bacteria are specifically adapted to the utilization of sulfated glycopolymers produced in microbial mats or biofilms.


July 7, 2019

Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by (13)C metabolic flux analysis and whole genome sequencing.

We evolved Thermus thermophilus to efficiently co-utilize glucose and xylose, the two most abundant sugars in lignocellulosic biomass, at high temperatures without carbon catabolite repression. To generate the strain, T. thermophilus HB8 was first evolved on glucose to improve its growth characteristics, followed by evolution on xylose. The resulting strain, T. thermophilus LC113, was characterized in growth studies, by whole genome sequencing, and (13)C-metabolic flux analysis ((13)C-MFA) with [1,6-(13)C]glucose, [5-(13)C]xylose, and [1,6-(13)C]glucose+[5-(13)C]xylose as isotopic tracers. Compared to the starting strain, the evolved strain had an increased growth rate (~2-fold), increased biomass yield, increased tolerance to high temperatures up to 90°C, and gained the ability to grow on xylose in minimal medium. At the optimal growth temperature of 81°C, the maximum growth rate on glucose and xylose was 0.44 and 0.46h(-1), respectively. In medium containing glucose and xylose the strain efficiently co-utilized the two sugars. (13)C-MFA results provided insights into the metabolism of T. thermophilus LC113 that allows efficient co-utilization of glucose and xylose. Specifically, (13)C-MFA revealed that metabolic fluxes in the upper part of metabolism adjust flexibly to sugar availability, while fluxes in the lower part of metabolism remain relatively constant. Whole genome sequence analysis revealed two large structural changes that can help explain the physiology of the evolved strain: a duplication of a chromosome region that contains many sugar transporters, and a 5x multiplication of a region on the pVV8 plasmid that contains xylose isomerase and xylulokinase genes, the first two enzymes of xylose catabolism. Taken together, (13)C-MFA and genome sequence analysis provided complementary insights into the physiology of the evolved strain. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.


July 7, 2019

Complete genome sequence of Vibrio alginolyticus ATCC 33787(T) isolated from seawater with three native megaplasmids.

Vibrio alginolyticus, an opportunistic pathogen, is commonly associated with vibriosis in fish and shellfish and can also cause superficial and ear infections in humans. V. alginolyticus ATCC 33787(T) was originally isolated from seawater and has been used as one of the type strains for exploring the virulence factors of marine bacteria and for developing vaccine against vibriosis. Here we sequenced and assembled the whole genome of this strain, and identified three megaplasmids and three Type VI secretion systems, thus providing useful information for the study of virulence factors and for the development of vaccine for Vibrio. Copyright © 2016. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.