Menu
July 7, 2019

Insights into Cedecea neteri strain M006 through complete genome sequence, a rare bacterium from aquatic environment.

Cedecea neteri M006 is a rare bacterium typically found as an environmental isolate from the tropical rainforest Sungai Tua waterfall (Gombak, Selangor, Malaysia). It is a Gram-reaction-negative, facultative anaerobic, bacillus. Here, we explore the features of Cedecea neteri M006, together with its genome sequence and annotation. The genome comprised 4,965,436 bp with 4447 protein-coding genes and 103 RNA genes.


July 7, 2019

Comparative genome analysis of Rathayibacter tritici NCPPB 1953 with Rathayibacter toxicus strains can facilitate studies on mechanisms of nematode association and host infection.

Rathayibacter tritici, which is a Gram positive, plant pathogenic, non-motile, and rod-shaped bacterium, causes spike blight in wheat and barley. For successful pathogenesis, R. tritici is associated with Anguina tritici, a nematode, which produces seed galls (ear cockles) in certain plant varieties and facilitates spread of infection. Despite significant efforts, little research is available on the mechanism of disease or bacteria-nematode association of this bacterium due to lack of genomic information. Here, we report the first complete genome sequence of R. tritici NCPPB 1953 with diverse features of this strain. The whole genome consists of one circular chromosome of 3,354,681 bp with a GC content of 69.48%. A total of 2,979 genes were predicted, comprising 2,866 protein coding genes and 49 RNA genes. The comparative genomic analyses between R. tritici NCPPB 1953 and R. toxicus strains identified 1,052 specific genes in R. tritici NCPPB 1953. Using the BlastKOALA database, we revealed that the flexible genome of R. tritici NCPPB 1953 is highly enriched in ‘Environmental Information Processing’ system and metabolic processes for diverse substrates. Furthermore, many specific genes of R. tritici NCPPB 1953 are distributed in substrate-binding proteins for extracellular signals including saccharides, lipids, phosphates, amino acids and metallic cations. These data provides clues on rapid and stable colonization of R. tritici for disease mechanism and nematode association.


July 7, 2019

Comparative genomic analysis identifies a Campylobacter clade deficient in selenium metabolism.

The nonthermotolerant Campylobacter species C. fetus, C. hyointestinalis, C. iguaniorum, and C. lanienae form a distinct phylogenetic cluster within the genus. These species are primarily isolated from foraging (swine) or grazing (e.g., cattle, sheep) animals and cause sporadic and infrequent human illness. Previous typing studies identified three putative novel C. lanienae-related taxa, based on either MLST or atpA sequence data. To further characterize these putative novel taxa and the C. fetus group as a whole, 76 genomes were sequenced, either to completion or to draft level. These genomes represent 26 C. lanienae strains and 50 strains of the three novel taxa. C. fetus, C. hyointestinalis and C. iguaniorum genomes were previously sequenced to completion; therefore, a comparative genomic analysis across the entire C. fetus group was conducted (including average nucleotide identity analysis) that supports the initial identification of these three novel Campylobacter species. Furthermore, C. lanienae and the three putative novel species form a discrete clade within the C. fetus group, which we have termed the C. lanienae clade. This clade is distinguished from other members of the C. fetus group by a reduced genome size and distinct CRISPR/Cas systems. Moreover, there are two signature characteristics of the C. lanienae clade. C. lanienae clade genomes carry four to ten unlinked and similar, but nonidentical, flagellin genes. Additionally, all 76 C. lanienae clade genomes sequenced demonstrate a complete absence of genes related to selenium metabolism, including genes encoding the selenocysteine insertion machinery, selenoproteins, and the selenocysteinyl tRNA. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.


July 7, 2019

Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis.

Rathayibacter toxicus is a forage grass associated Gram-positive bacterium of major concern to food safety and agriculture. This species is listed by USDA-APHIS as a plant pathogen select agent because it produces a tunicamycin-like toxin that is lethal to livestock and may be vectored by nematode species native to the U.S. The complete genomes of two strains of R. toxicus, including the type strain FH-79, were sequenced and analyzed in comparison with all available, complete R. toxicus genomes. Genome sizes ranged from 2,343,780 to 2,394,755 nucleotides, with 2079 to 2137 predicted open reading frames; all four strains showed remarkable synteny over nearly the entire genome, with only a small transposed region. A cluster of genes with similarity to the tunicamycin biosynthetic cluster from Streptomyces chartreusis was identified. The tunicamycin gene cluster (TGC) in R. toxicus contained 14 genes in two transcriptional units, with all of the functional elements for tunicamycin biosynthesis present. The TGC had a significantly lower GC content (52%) than the rest of the genome (61.5%), suggesting that the TGC may have originated from a horizontal transfer event. Further analysis indicated numerous remnants of other potential horizontal transfer events are present in the genome. In addition to the TGC, genes potentially associated with carotenoid and exopolysaccharide production, bacteriocins and secondary metabolites were identified. A CRISPR array is evident. There were relatively few plant-associated cell-wall hydrolyzing enzymes, but there were numerous secreted serine proteases that share sequence homology to the pathogenicity-associated protein Pat-1 of Clavibacter michiganensis. Overall, the genome provides clear insight into the possible mechanisms for toxin production in R. toxicus, providing a basis for future genetic approaches.


July 7, 2019

Complete genome sequence of the nematicidal Bacillus thuringiensis MYBT18246.

Bacillus thuringiensis is a rod-shaped facultative anaerobic spore forming bacterium of the genus Bacillus . The defining feature of the species is the ability to produce parasporal crystal inclusion bodies, consisting of d-endotoxins, encoded by cry-genes. Here we present the complete annotated genome sequence of the nematicidal B. thuringiensis strain MYBT18246. The genome comprises one 5,867,749 bp chromosome and 11 plasmids which vary in size from 6330 bp to 150,790 bp. The chromosome contains 6092 protein-coding and 150 RNA genes, including 36 rRNA genes. The plasmids encode 997 proteins and 4 t-RNA’s. Analysis of the genome revealed a large number of mobile elements involved in genome plasticity including 11 plasmids and 16 chromosomal prophages. Three different nematicidal toxin genes were identified and classified according to the Cry toxin naming committee as cry13Aa2, cry13Ba1, and cry13Ab1. Strikingly, these genes are located on the chromosome in close proximity to three separate prophages. Moreover, four putative toxin genes of different toxin classes were identified on the plasmids p120510 (Vip-like toxin), p120416 (Cry-like toxin) and p109822 (two Bin-like toxins). A comparative genome analysis of B. thuringiensis MYBT18246 with three closely related B. thuringiensis strains enabled determination of the pan-genome of B. thuringiensis MYBT18246, revealing a large number of singletons, mostly represented by phage genes, morons and cryptic genes.


July 7, 2019

Paenibacillus ihbetae sp. nov., a cold-adapted antimicrobial producing bacterium isolated from high altitude Suraj Tal Lake in the Indian trans-Himalayas.

The assessment of bacterial diversity and bioprospection of the high-altitude lake Suraj Tal microorganisms for potent antimicrobial activities revealed the presence of two Gram-stain-variable, endospore-forming, rod-shaped, aerobic bacteria, namely IHBB 9852(T) and IHBB 9951. Phylogenetic analysis based on 16S rRNA gene sequence showed the affiliation of strains IHBB 9852(T) and IHBB 9951 within the genus Paenibacillus, exhibiting the highest sequence similarity to Paenibacillus lactis DSM 15596(T) (97.8% and 97.7%) and less than 95.9% similarity to other species of the genus Paenibacillus. DNA-DNA relatedness among strains IHBB 9852(T) and IHBB 9951 was 90.2%, and with P. lactis DSM 15596(T), was 52.7% and 52.4%, respectively. The novel strains contain anteiso-C15:0, iso-C15:0, C16:0 and iso-C16:0 as major fatty acids, and phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol were predominant polar lipids. The DNA G+C content for IHBB 9852T and IHBB 9951 was 52.1 and 52.2mol%. Based on the results of phenotypic and genomic characterisations, we concluded that strains IHBB 9852(T) and IHBB 9951 belong to a novel Paenibacillus species, for which the name Paenibacillus ihbetae sp. nov. is proposed. The type strain is IHBB 9852(T) (=MTCC 12459(T)=MCC 2795(T)=JCM 31131(T)=KACC 19072(T); DPD TaxonNumber TA00046) and IHBB 9951 (=MTCC 12458=MCC 2794=JCM 31132=KACC 19073) is a reference strain. Copyright © 2017. Published by Elsevier GmbH.


July 7, 2019

Restriction-modification mediated barriers to exogenous DNA uptake and incorporation employed by Prevotella intermedia.

Prevotella intermedia, a major periodontal pathogen, is increasingly implicated in human respiratory tract and cystic fibrosis lung infections. Nevertheless, the specific mechanisms employed by this pathogen remain only partially characterized and poorly understood, largely due to its total lack of genetic accessibility. Here, using Single Molecule, Real-Time (SMRT) genome and methylome sequencing, bisulfite sequencing, in addition to cloning and restriction analysis, we define the specific genetic barriers to exogenous DNA present in two of the most widespread laboratory strains, P. intermedia ATCC 25611 and P. intermedia Strain 17. We identified and characterized multiple restriction-modification (R-M) systems, some of which are considerably divergent between the two strains. We propose that these R-M systems are the root cause of the P. intermedia transformation barrier. Additionally, we note the presence of conserved Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) systems in both strains, which could provide a further barrier to exogenous DNA uptake and incorporation. This work will provide a valuable resource during the development of a genetic system for P. intermedia, which will be required for fundamental investigation of this organism’s physiology, metabolism, and pathogenesis in human disease.


July 7, 2019

Xanthomonas adaptation to common bean is associated with horizontal transfers of genes encoding TAL effectors.

Common bacterial blight is a devastating bacterial disease of common bean (Phaseolus vulgaris) caused by Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli. These phylogenetically distant strains are able to cause similar symptoms on common bean, suggesting that they have acquired common genetic determinants of adaptation to common bean. Transcription Activator-Like (TAL) effectors are bacterial type III effectors that are able to induce the expression of host genes to promote infection or resistance. Their capacity to bind to a specific host DNA sequence suggests that they are potential candidates for host adaption.To study the diversity of tal genes from Xanthomonas strains responsible for common bacterial blight of bean, whole genome sequences of 17 strains representing the diversity of X. citri pv. fuscans and X. phaseoli pv. phaseoli were obtained by single molecule real time sequencing. Analysis of these genomes revealed the existence of four tal genes named tal23A, tal20F, tal18G and tal18H, respectively. While tal20F and tal18G were chromosomic, tal23A and tal18H were carried on plasmids and shared between phylogenetically distant strains, therefore suggesting recent horizontal transfers of these genes between X. citri pv. fuscans and X. phaseoli pv. phaseoli strains. Strikingly, tal23A was present in all strains studied, suggesting that it played an important role in adaptation to common bean. In silico predictions of TAL effectors targets in the common bean genome suggested that TAL effectors shared by X. citri pv. fuscans and X. phaseoli pv. phaseoli strains target the promoters of genes of similar functions. This could be a trace of convergent evolution among TAL effectors from different phylogenetic groups, and comforts the hypothesis that TAL effectors have been implied in the adaptation to common bean.Altogether, our results favour a model where plasmidic TAL effectors are able to contribute to host adaptation by being horizontally transferred between distant lineages.


July 7, 2019

High-quality genome sequence of the radioresistant bacterium Deinococcus ficus KS 0460.

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.


July 7, 2019

From isolate to answer: how whole genome sequencing is helping us rapidly characterise nosocomial bacterial outbreaks

The occurrence of highly resistant bacterial pathogens has risen in recent years, causing immense strain on the healthcare industry. Hospital-acquired infections are arguably of most concern, as bacterial outbreaks in clinical settings provide an ideal environment for proliferation among vulnerable populations. Understanding these outbreaks beyond what can be determined with traditional clinical diagnostics and implementing these new techniques routinely in the hospital environment has now become a major focus. This brief review will discuss the three main whole genome sequence techniques available today, and how they are being used to further discriminate bacterial outbreaks in nosocomial settings.


July 7, 2019

Complete genome sequence of a livestock-associated methicillin-resistant Staphylococcus aureus sequence type 5 isolate from the United States.

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) may be the largest MRSA reservoir outside the hospital setting. One concern with LA-MRSA is the acquisition of novel mobile genetic elements by these isolates. Here, we report the complete genome sequence of a swine LA-MRSA sequence type 5 isolate from the United States.


July 7, 2019

Complete genome sequence of Stenotrophomonas sp. strain WZN-1, which is capable of degrading polybrominated diphenyl ethers.

Stenotrophomonas sp. strain WZN-1, isolated from an e-waste recycling area in Tianjin, China, is capable of degrading polybrominated diphenyl ethers (PBDEs). The complete genome of strain WZN-1 consists of 4,512,703 bp. This genome information will provide important information about the biodegradation pathways and mechanisms of PBDEs. Copyright © 2017 Wu et al.


July 7, 2019

Complete genome sequence of Escherichia coli ABWA45, an rmtB-encoding wastewater isolate.

We present the complete genome sequence of Escherichia coli ABWA45, a 16S rRNA methyltransferase-producing wastewater isolate. Assembly and annotation resulted in a 5,094,639-bp circular chromosome and four closed plasmids of 145,220 bp, 113,793 bp, 57,232 bp, and 47,900 bp in size. Furthermore, a small open plasmid (7,537 bp in size) was assembled. Copyright © 2017 Zurfluh et al.


July 7, 2019

Complete genome sequence of Mycobacterium stephanolepidis.

Mycobacterium stephanolepidis is a rapid-growing nonpigmented species isolated from marine teleost fish (Stephanolepis cirrhifer) and is closely related to Mycobacterium chelonae Here, we report the complete sequence of its genome, comprising a 4.9-Mb chromosome. The sequence represents essential data for future phylogenetic and comparative genome studies of this fish pathogen. Copyright © 2017 Fukano et al.


July 7, 2019

Complete genome sequence of Streptomyces sp. TN58, a producer of acyl alpha-L-rhamnopyranosides.

Streptomyces sp. TN58, isolated from a Tunisian soil sample, produces several natural products, including acyl alpha-l-rhamnopyranosides. It possesses a 7.6-Mb linear chromosome. This is, to our knowledge, the first genome sequence of a microorganism known to produce acyl alpha-l-rhamnopyranosides, and it will be helpful to study the biosynthesis of these specialized metabolites. Copyright © 2017 Najah et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.