Menu
July 7, 2019  |  

High-quality genome sequence of the radioresistant bacterium Deinococcus ficus KS 0460.

Authors: Matrosova, Vera Y and Gaidamakova, Elena K and Makarova, Kira S and Grichenko, Olga and Klimenkova, Polina and Volpe, Robert P and Tkavc, Rok and Ertem, Gözen and Conze, Isabel H and Brambilla, Evelyne and Huntemann, Marcel and Clum, Alicia and Pillay, Manoj and Palaniappan, Krishnaveni and Varghese, Neha and Mikhailova, Natalia and Stamatis, Dimitrios and Reddy, Tbk and Daum, Chris and Shapiro, Nicole and Ivanova, Natalia and Kyrpides, Nikos and Woyke, Tanja and Daligault, Hajnalka and Davenport, Karen and Erkkila, Tracy and Goodwin, Lynne A and Gu, Wei and Munk, Christine and Teshima, Hazuki and Xu, Yan and Chain, Patrick and Woolbert, Michael and Gunde-Cimerman, Nina and Wolf, Yuri I and Grebenc, Tine and Gostincar, Cene and Daly, Michael J

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.

Journal: Standards in genomic sciences
DOI: 10.1186/s40793-017-0258-y
Year: 2017

Read publication

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.