Menu
July 7, 2019

Identification of a gene cluster for telomestatin biosynthesis and heterologous expression using a specific promoter in a clean host.

Telomestatin, a strong telomerase inhibitor with G-quadruplex stabilizing activity, is a potential therapeutic agent for treating cancers. Difficulties in isolating telomestatin from microbial cultures and in chemical synthesis are bottlenecks impeding the wider use. Therefore, improvement in telomestatin production and structural diversification are required for further utilization and application. Here, we discovered the gene cluster responsible for telomestatin biosynthesis, and achieved production of telomestatin by heterologous expression of this cluster in the engineered Streptomyces avermitilis SUKA strain. Utilization of an optimal promoter was essential for successful production. Gene disruption studies revealed that the tlsB, tlsC, and tlsO-T genes play key roles in telomestatin biosynthesis. Moreover, exchanging TlsC core peptide sequences resulted in the production of novel telomestatin derivatives. This study sheds light on the expansion of chemical diversity of natural peptide products for drug development.


July 7, 2019

Isolation of a novel ‘atypical’ Brucella strain from a bluespotted ribbontail ray (Taeniura lymma).

A pleomorphic Gram-negative, motile coccobacillus was isolated from the gills of a wild-caught bluespotted ribbontail ray after its sudden death during quarantine. Strain 141012304 was observed to grow aerobically, to be clearly positive for cytochrome oxidase, catalase, urease and was initially identified as “Brucella melitensis” or “Ochrobactrum anthropi” by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry and VITEK2-compact(®), respectively. Affiliation to the genus Brucella was confirmed by bcsp31 and IS711 PCR as well as by Brucella species-specific multiplex PCR, therein displaying a characteristic banding pattern recently described for Brucella strains obtained from amphibian hosts. Likewise, based on recA sequencing, strain 141012304 was found to form a separate lineage, within the so called ‘atypical’ Brucella, consisting of genetically more distantly related strains. The closest similarity was detected to brucellae, which have recently been isolated from edible bull frogs. Subsequent next generation genome sequencing and phylogenetic analysis confirmed that the ray strain represents a novel Brucella lineage within the atypical group of Brucella and in vicinity to Brucella inopinata and Brucella strain BO2, both isolated from human patients. This is the first report of a natural Brucella infection in a saltwater fish extending the host range of this medically important genus.


July 7, 2019

Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species.

To investigate a set of MDR conjugative plasmids found in Vibrio species and characterize the underlying evolution process.pAQU-type plasmids from Vibrio species were sequenced using both Illumina and PacBio platforms. Bioinformatics tools were utilized to analyse the typical MDR regions and core genes in the plasmids.The nine pAQU-type plasmids ranged from ~160 to 206?kb in size and were found to harbour as many as 111 core genes encoding conjugative, replication and maintenance functions. Eight plasmids were found to carry a typical MDR region, which contained various accessory and resistance genes, including ISCR1-blaPER-1-bearing complex class 1 integrons, ISCR2-floR, ISCR2-tet(D)-tetR-ISCR2, qnrVC6, a Tn10-like structure and others associated with mobile elements. Comparison between a plasmid without resistance genes and different MDR plasmids showed that integration of different mobile elements, such as IS26, ISCR1, ISCR2, IS10 and IS6100, into the plasmid backbone was the key mechanism by which foreign resistance genes were acquired during the evolution process.This study identified pAQU-type plasmids as emerging MDR conjugative plasmids among important pathogens from different origins in Asia. These findings suggest that aquatic bacteria constitute a major reservoir of resistance genes, which may be transmissible to other human pathogens during food production and processing.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019

IncFII conjugative plasmid-mediated transmission of blaNDM-1 elements among animal-borne Escherichia coli strains.

This study aims to investigate the prevalence and transmission dynamics of the blaNDM-1 gene in animal Escherichia coli strains. Two IncFII blaNDM-1-encoding plasmids with only minor structural variation in the MDR region, pHNEC46-NDM and pHNEC55-NDM, were found to be responsible for the transmission of blaNDM-1 in these strains. The blaNDM-1 gene can be incorporated into plasmids and stably inherited in animal-borne E. coli strains that can be maintained in animal gut microflora even without carbapenem selection pressure. Copyright © 2016 American Society for Microbiology.


July 7, 2019

Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria.

Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix.According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria.These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution.


July 7, 2019

Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis.

Listeria monocytogenes is a food-borne pathogen that can cause meningitis. The listerial genotype ST6 has been linked to increasing rates of unfavourable outcome over time. We investigated listerial genetic variation and the relation with clinical outcome in meningitis.We sequenced 96 isolates from adults with listerial meningitis included in two prospective nationwide cohort studies by whole genome sequencing, and evaluated associations between bacterial genetic variation and clinical outcome. We validated these results by screening listerial genotypes of 445 cerebrospinal fluid and blood isolates from patients over a 30-year period from the Dutch national surveillance cohort.We identified a bacteriophage, phiLMST6 co-occurring with a novel plasmid, pLMST6, in ST6 isolates to be associated with unfavourable outcome in patients (p 2.83e-05). The plasmid carries a benzalkonium chloride tolerance gene, emrC, conferring decreased susceptibility to disinfectants used in the food-processing industry. Isolates harbouring emrC were growth inhibited at higher levels of benzalkonium chloride (median 60 mg/L versus 15 mg/L; p <0.001), and had higher MICs for amoxicillin and gentamicin compared with isolates without emrC (both p <0.001). Transformation of pLMST6 into naive strains led to benzalkonium chloride tolerance and higher MICs for gentamicin.These results show that a novel plasmid, carrying the efflux transporter emrC, is associated with increased incidence of ST6 listerial meningitis in the Netherlands. Suggesting increased disease severity, our findings warrant consideration of disinfectants used in the food-processing industry that select for resistance mechanisms and may, inadvertently, lead to increased risk of poor disease outcome. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.


July 7, 2019

Geographical structure of endosymbiotic bacteria hosted by Bathymodiolus mussels at eastern Pacific hydrothermal vents.

Chemolithoautotrophic primary production sustains dense invertebrate communities at deep-sea hydrothermal vents and hydrocarbon seeps. Symbiotic bacteria that oxidize dissolved sulfur, methane, and hydrogen gases nourish bathymodiolin mussels that thrive in these environments worldwide. The mussel symbionts are newly acquired in each generation via infection by free-living forms. This study examined geographical subdivision of the thiotrophic endosymbionts hosted by Bathymodiolus mussels living along the eastern Pacific hydrothermal vents. High-throughput sequencing data of 16S ribosomal RNA encoding gene and fragments of six protein-coding genes of symbionts were examined in the samples collected from nine vent localities at the East Pacific Rise, Galápagos Rift, and Pacific-Antarctic Ridge.Both of the parapatric sister-species, B. thermophilus and B. antarcticus, hosted the same numerically dominant phylotype of thiotrophic Gammaproteobacteria. However, sequences from six protein-coding genes revealed highly divergent symbiont lineages living north and south of the Easter Microplate and hosted by these two Bathymodiolus mussel species. High heterogeneity of symbiont haplotypes among host individuals sampled from the same location suggested that stochasticity associated with initial infections was amplified as symbionts proliferated within the host individuals. The mussel species presently contact one another and hybridize along the Easter Microplate, but the northern and southern symbionts appear to be completely isolated. Vicariance associated with orogeny of the Easter Microplate region, 2.5-5.3 million years ago, may have initiated isolation of the symbiont and host populations. Estimates of synonymous substitution rates for the protein-coding bacterial genes examined in this study were 0.77-1.62%/nucleotide/million years.Our present study reports the most comprehensive population genetic analyses of the chemosynthetic endosymbiotic bacteria based on high-throughput genetic data and extensive geographical sampling to date, and demonstrates the role of the geographical features, the Easter Microplate and geographical distance, in the intraspecific divergence of this bacterial species along the mid-ocean ridge axes in the eastern Pacific. Altogether, our results provide insights into extrinsic and intrinsic factors affecting the dispersal and evolution of chemosynthetic symbiotic partners in the hydrothermal vents along the eastern Pacific Ocean.


July 7, 2019

Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli.

The mobile colistin resistance gene mcr-1 has attracted global attention, as it heralds the breach of polymyxins, one of the last-resort antibiotics for the treatment of severe clinical infections caused by multidrug-resistant Gram-negative bacteria. To date, six slightly different variants of mcr-1, and a second mobile colistin resistance gene, mcr-2, have been reported or annotated in the GenBank database. Here, we characterized a third mobile colistin resistance gene, mcr-3 The gene coexisted with 18 additional resistance determinants in the 261-kb IncHI2-type plasmid pWJ1 from porcine Escherichia colimcr-3 showed 45.0% and 47.0% nucleotide sequence identity to mcr-1 and mcr-2, respectively, while the deduced amino acid sequence of MCR-3 showed 99.8 to 100% and 75.6 to 94.8% identity to phosphoethanolamine transferases found in other Enterobacteriaceae species and in 10 Aeromonas species, respectively. pWJ1 was mobilized to an E. coli recipient by conjugation and contained a plasmid backbone similar to those of other mcr-1-carrying plasmids, such as pHNSHP45-2 from the original mcr-1-harboring E. coli strain. Moreover, a truncated transposon element, TnAs2, which was characterized only in Aeromonas salmonicida, was located upstream of mcr-3 in pWJ1. This ?TnAs2-mcr-3 element was also identified in a shotgun genome sequence of a porcine E. coli isolate from Malaysia, a human Klebsiella pneumoniae isolate from Thailand, and a human Salmonella enterica serovar Typhimurium isolate from the United States. These results suggest the likelihood of a wide dissemination of the novel mobile colistin resistance gene mcr-3 among Enterobacteriaceae and aeromonads; the latter may act as a potential reservoir for mcr-3IMPORTANCE The emergence of the plasmid-mediated colistin resistance gene mcr-1 has attracted substantial attention worldwide. Here, we examined a colistin-resistant Escherichia coli isolate that was negative for both mcr-1 and mcr-2 and discovered a novel mobile colistin resistance gene, mcr-3 The amino acid sequence of MCR-3 aligned closely with phosphoethanolamine transferases from Enterobacteriaceae and Aeromonas species originating from both clinical infections and environmental samples collected in 12 countries on four continents. Due to the ubiquitous profile of aeromonads in the environment and the potential transfer of mcr-3 between Enterobacteriaceae and Aeromonas species, the wide spread of mcr-3 may be largely underestimated. As colistin has been and still is widely used in veterinary medicine and used at increasing frequencies in human medicine, the continuous monitoring of mobile colistin resistance determinants in colistin-resistant Gram-negative bacteria is imperative for understanding and tackling the dissemination of mcr genes in both the agricultural and health care sectors. Copyright © 2017 Yin et al.


July 7, 2019

Detection of diazotrophy in the acetylene-fermenting anaerobe, Pelobacter strain SFB93.

Acetylene (C2H2) is a trace constituent of the present Earth’s oxidizing atmosphere, reflecting a mix of terrestrial and marine emissions from anthropogenic, biomass burning, and unidentified biogenic sources. Fermentation of acetylene was serendipitously discovered during C2H2-block assays of N2O reductase, and Pelobacter acetylenicus was shown to grow on C2H2 via acetylene hydratase (AH). AH is a W-containing, catabolic, low redox potential enzyme that unlike nitrogenase (N2ase) is specific for acetylene. Acetylene fermentation is a rare metabolism that is well-characterized only in P. acetylenicus DSM3246 and DSM3247, and Pelobacter sp. strain SFB93. To better understand the genetic controls on AH activity, we sequenced the genomes of the three acetylene-fermenting Pelobacter strains. Genome assembly and annotation produced three novel genomes containing gene sequences for AH, with two copies being present in SFB93. In addition, gene sequences for all five compulsory genes for Mo-Fe nitrogenase were also present in the three genomes, indicating the co-occurrence of 2 acetylene-transformation pathways. Nitrogen fixation growth assays showed that DSM3426 could ferment acetylene in the absence of ammonium, but no ethylene was produced. However, SFB93 degraded acetylene, and in the absence of ammonium, produced ethylene indicating an active N2ase. Diazotrophic growth was observed under N2 but not in experimental controls incubated under Ar. SFB93 exhibits acetylene fermentation and nitrogen fixation, the only known biochemical mechanisms for acetylene transformation. Our results indicate complex interactions between N2ase and AH and suggest novel evolutionary pathways of these relic enzymes from early Earth to modern day.Importance Here we show that a single Pelobacter strain can grow via acetylene fermentation and carry out nitrogen fixation, using the only 2 enzymes known to transform acetylene. These findings provide new insights into acetylene transformations and adaptations for nutrient (C, N) and energy acquisition by microorganisms. Enhanced understanding of acetylene transformations in modern environments (i.e., extent, occurrence, rates, etc.) is important for using acetylene as a potential biomarker for extraterrestrial life and degradation of anthropogenic contaminants. Copyright © 2017 American Society for Microbiology.


July 7, 2019

Complete genome sequence of the cellulose-producing strain Komagataeibacter nataicola RZS01.

Komagataeibacter nataicola is an acetic acid bacterium (AAB) that can produce abundant bacterial cellulose and tolerate high concentrations of acetic acid. To globally understand its fermentation characteristics, we present a high-quality complete genome sequence of K. nataicola RZS01. The genome consists of a 3,485,191-bp chromosome and 6 plasmids, which encode 3,514 proteins and bear three cellulose synthase operons. Phylogenetic analysis at the genome level provides convincing evidence of the evolutionary position of K. nataicola with respect to related taxa. Genomic comparisons with other AAB revealed that RZS01 shares 36.1%~75.1% of sequence similarity with other AAB. The sequence data was also used for metabolic analysis of biotechnological substrates. Analysis of the resistance to acetic acid at the genomic level indicated a synergistic mechanism responsible for acetic acid tolerance. The genomic data provide a viable platform that can be used to understand and manipulate the phenotype of K. nataicola RZS01 to further improve bacterial cellulose production.


July 7, 2019

Multiple genome sequences of exopolysaccharide-producing, brewery-associated Lactobacillus brevis strains.

Lactobacillus brevis represents one of the most relevant beer-spoiling bacteria. Besides strains causing turbidity and off flavors upon growth and metabolite formation, this species also comprises strains that produce exopolysaccharides (EPSs), which increase the viscosity of beer. Here, we report the complete genome sequences of three EPS-producing, brewery-associated L. brevis strains. Copyright © 2017 Fraunhofer et al.


July 7, 2019

Non-toxin-producing Bacillus cereus strains belonging to the B. anthracis clade isolated from the International Space Station.

In an ongoing Microbial Observatory investigation of the International Space Station (ISS), 11 Bacillus strains (2 from the Kibo Japanese experimental module, 4 from the U.S. segment, and 5 from the Russian module) were isolated and their whole genomes were sequenced. A comparative analysis of the 16S rRNA gene sequences of these isolates showed the highest similarity (>99%) to the Bacillus anthracis-B. cereus-B. thuringiensis group. The fatty acid composition, polar lipid profile, peptidoglycan type, and matrix-assisted laser desorption ionization-time of flight profiles were consistent with the B. cereus sensu lato group. The phenotypic traits such as motile rods, enterotoxin production, lack of capsule, and resistance to gamma phage/penicillin observed in ISS isolates were not characteristics of B. anthracis. Whole-genome sequence characterizations showed that ISS strains had the plcR non-B. anthracis ancestral “C” allele and lacked anthrax toxin-encoding plasmids pXO1 and pXO2, excluding their identification as B. anthracis. The genetic identities of all 11 ISS isolates characterized via gyrB analyses arbitrarily identified them as members of the B. cereus group, but traditional DNA-DNA hybridization (DDH) showed that the ISS isolates are similar to B. anthracis (88% to 90%) but distant from the B. cereus (42%) and B. thuringiensis (48%) type strains. The DDH results were supported by average nucleotide identity (>98.5%) and digital DDH (>86%) analyses. However, the collective phenotypic traits and genomic evidence were the reasons to exclude the ISS isolates from B. anthracis. Nevertheless, multilocus sequence typing and whole-genome single nucleotide polymorphism analyses placed these isolates in a clade that is distinct from previously described members of the B. cereus sensu lato group but closely related to B. anthracis. IMPORTANCE The International Space Station Microbial Observatory (Microbial Tracking-1) study is generating a microbial census of the space station’s surfaces and atmosphere by using advanced molecular microbial community analysis techniques supported by traditional culture-based methods and modern bioinformatic computational modeling. This approach will lead to long-term, multigenerational studies of microbial population dynamics in a closed environment and address key questions, including whether microgravity influences the evolution and genetic modification of microorganisms. The spore-forming Bacillus cereus sensu lato group consists of pathogenic (B. anthracis), food poisoning (B. cereus), and biotechnologically useful (B. thuringiensis) microorganisms; their presence in a closed system such as the ISS might be a concern for the health of crew members. A detailed characterization of these potential pathogens would lead to the development of suitable countermeasures that are needed for long-term future missions and a better understanding of microorganisms associated with space missions.


July 7, 2019

Complete genome sequences of two Salmonella enterica subsp. enterica serovar Enteritidis strains isolated from egg products in the United States.

Egg-associated salmonellosis is an important public health problem in many countries. Here, we report the genome sequences, including plasmids, of two strains of Salmonella enterica subsp. enterica serovar Enteritidis isolated from egg products in 2012 and 2013 in the United States. This will provide more information and insight into the research about egg-associated salmonellosis. Copyright © 2017 Hu et al.


July 7, 2019

Complete genome sequence of Stenotrophomonas sp. KCTC 12332, a biotechnological potential bacterium.

Hydroxy fatty acids are used in various industries due to their availability, and in particular, Stenotrophomonas sp. has been regarded as a potential candidate for biotechnological applications, including biotransformation that hydrate unsaturated fatty acids into their derivatives. Here we complete the genome sequence of Stenotrophomonas sp. KCTC 12332 which has a size of 4,541,594bp (G+C content of 63.83%) with 3790 coding DNA sequences (CDSs), 67 tRNA and 3 rRNA operons. The genome contains gene encoding oleate hydratase that can convert oleic acid into 10-hydroxyoctadecanoic acid. Copyright © 2017 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.