Menu
July 7, 2019  |  

Patterns of polymorphism at the self-incompatibility locus in 1,083 Arabidopsis thaliana genomes.

Although the transition to selfing in the model plant Arabidopsis thaliana involved the loss of the self-incompatibility (SI) system, it clearly did not occur due to the fixation of a single inactivating mutation at the locus determining the specificities of SI (the S-locus). At least three groups of divergent haplotypes (haplogroups), corresponding to ancient functional S-alleles, have been maintained at this locus, and extensive functional studies have shown that all three carry distinct inactivating mutations. However, the historical process of loss of SI is not well understood, in particular its relation with the last glaciation. Here, we took advantage of recently published genomic resequencing data in 1,083 Arabidopsis thaliana accessions that we combined with BAC sequencing to obtain polymorphism information for the whole S-locus region at a species-wide scale. The accessions differed by several major rearrangements including large deletions and interhaplogroup recombinations, forming a set of haplogroups that are widely distributed throughout the native range and largely overlap geographically. “Relict” A. thaliana accessions that directly derive from glacial refugia are polymorphic at the S-locus, suggesting that the three haplogroups were already present when glacial refugia from the last Ice Age became isolated. Interhaplogroup recombinant haplotypes were highly frequent, and detailed analysis of recombination breakpoints suggested multiple independent origins. These findings suggest that the complete loss of SI in A. thaliana involved independent self-compatible mutants that arose prior to the last Ice Age, and experienced further rearrangements during postglacial colonization.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

The unique genomic landscape surrounding the EPSPS gene in glyphosate resistant Amaranthus palmeri: a repetitive path to resistance.

The expanding number and global distributions of herbicide resistant weedy species threaten food, fuel, fiber and bioproduct sustainability and agroecosystem longevity. Amongst the most competitive weeds, Amaranthus palmeri S. Wats has rapidly evolved resistance to glyphosate primarily through massive amplification and insertion of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene across the genome. Increased EPSPS gene copy numbers results in higher titers of the EPSPS enzyme, the target of glyphosate, and confers resistance to glyphosate treatment. To understand the genomic unit and mechanism of EPSPS gene copy number proliferation, we developed and used a bacterial artificial chromosome (BAC) library from a highly resistant biotype to sequence the local genomic landscape flanking the EPSPS gene.By sequencing overlapping BACs, a 297 kb sequence was generated, hereafter referred to as the “EPSPS cassette.” This region included several putative genes, dense clusters of tandem and inverted repeats, putative helitron and autonomous replication sequences, and regulatory elements. Whole genome shotgun sequencing (WGS) of two biotypes exhibiting high and no resistance to glyphosate was performed to compare genomic representation across the EPSPS cassette. Mapping of sequences for both biotypes to the reference EPSPS cassette revealed significant differences in upstream and downstream sequences relative to EPSPS with regard to both repetitive units and coding content between these biotypes. The differences in sequence may have resulted from a compounded-building mechanism such as repetitive transpositional events. The association of putative helitron sequences with the cassette suggests a possible amplification and distribution mechanism. Flow cytometry revealed that the EPSPS cassette added measurable genomic content.The adoption of glyphosate resistant cropping systems in major crops such as corn, soybean, cotton and canola coupled with excessive use of glyphosate herbicide has led to evolved glyphosate resistance in several important weeds. In Amaranthus palmeri, the amplification of the EPSPS cassette, characterized by a complex array of repetitive elements and putative helitron sequences, suggests an adaptive structural genomic mechanism that drives amplification and distribution around the genome. The added genomic content not found in glyphosate sensitive plants may be driving evolution through genome expansion.


July 7, 2019  |  

Complete gene sequence of spider attachment silk protein (PySp1) reveals novel linker regions and extreme repeat homogenization.

Spiders use a myriad of silk types for daily survival, and each silk type has a unique suite of task-specific mechanical properties. Of all spider silk types, pyriform silk is distinct because it is a combination of a dry protein fiber and wet glue. Pyriform silk fibers are coated with wet cement and extruded into “attachment discs” that adhere silks to each other and to substrates. The mechanical properties of spider silk types are linked to the primary and higher-level structures of spider silk proteins (spidroins). Spidroins are often enormous molecules (>250 kDa) and have a lengthy repetitive region that is flanked by relatively short (~100 amino acids), non-repetitive amino- and carboxyl-terminal regions. The amino acid sequence motifs in the repetitive region vary greatly between spidroin type, while motif length and number underlie the remarkable mechanical properties of spider silk fibers. Existing knowledge of pyriform spidroins is fragmented, making it difficult to define links between the structure and function of pyriform spidroins. Here, we present the full-length sequence of the gene encoding pyriform spidroin 1 (PySp1) from the silver garden spider Argiope argentata. The predicted protein is similar to previously reported PySp1 sequences but the A. argentata PySp1 has a uniquely long and repetitive “linker”, which bridges the amino-terminal and repetitive regions. Predictions of the hydrophobicity and secondary structure of A. argentata PySp1 identify regions important to protein self-assembly. Analysis of the full complement of A. argentata PySp1 repeats reveals extreme intragenic homogenization, and comparison of A. argentata PySp1 repeats with other PySp1 sequences identifies variability in two sub-repetitive expansion regions. Overall, the full-length A. argentata PySp1 sequence provides new evidence for understanding how pyriform spidroins contribute to the properties of pyriform silk fibers. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.


July 7, 2019  |  

Identification of a gene cluster for telomestatin biosynthesis and heterologous expression using a specific promoter in a clean host.

Telomestatin, a strong telomerase inhibitor with G-quadruplex stabilizing activity, is a potential therapeutic agent for treating cancers. Difficulties in isolating telomestatin from microbial cultures and in chemical synthesis are bottlenecks impeding the wider use. Therefore, improvement in telomestatin production and structural diversification are required for further utilization and application. Here, we discovered the gene cluster responsible for telomestatin biosynthesis, and achieved production of telomestatin by heterologous expression of this cluster in the engineered Streptomyces avermitilis SUKA strain. Utilization of an optimal promoter was essential for successful production. Gene disruption studies revealed that the tlsB, tlsC, and tlsO-T genes play key roles in telomestatin biosynthesis. Moreover, exchanging TlsC core peptide sequences resulted in the production of novel telomestatin derivatives. This study sheds light on the expansion of chemical diversity of natural peptide products for drug development.


July 7, 2019  |  

Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize.

Gynogenesis is an asexual mode of reproduction common to animals and plants, in which stimuli from the sperm cell trigger the development of the unfertilized egg cell into a haploid embryo. Fine mapping restricted a major maize QTL (quantitative trait locus) responsible for the aptitude of inducer lines to trigger gynogenesis to a zone containing a single gene NOT LIKE DAD (NLD) coding for a patatin-like phospholipase A. In all surveyed inducer lines, NLD carries a 4-bp insertion leading to a predicted truncated protein. This frameshift mutation is responsible for haploid induction because complementation with wild-type NLD abolishes the haploid induction capacity. Activity of the NLD promoter is restricted to mature pollen and pollen tube. The translational NLD::citrine fusion protein likely localizes to the sperm cell plasma membrane. In Arabidopsis roots, the truncated protein is no longer localized to the plasma membrane, contrary to the wild-type NLD protein. In conclusion, an intact pollen-specific phospholipase is required for successful sexual reproduction and its targeted disruption may allow establishing powerful haploid breeding tools in numerous crops.© 2017 The Authors.


July 7, 2019  |  

Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica.

Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Genome-wide identification of the mutation underlying fleece variation and discriminating ancestral hairy species from modern woolly sheep.

The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the “woolly” allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3′ UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Sequencing the genomic regions flanking S-linked PvGLO sequences confirms the presence of two GLO loci, one of which lies adjacent to the style-length determinant gene CYP734A50.

Primula vulgaris contains two GLOBOSA loci, one located adjacent to the style length determinant gene CYP734A50 which lies within the S -locus. Using a combination of BAC walking and PacBio sequencing, we have sequenced two substantial genomic contigs in and around the S-locus of Primula vulgaris. Using these data, we were able to demonstrate that two alleles of PvGlo (P) as well as PvGlo (T) can be present in the genome of a single plant, providing empirical evidence that these two forms of the MADS-box gene GLOBOSA are separate loci and not allelic as previously reported. We propose they should be renamed PvGLO1 and PvGLO2. BAC contigs extending from each GLOBOSA locus were identified and fully sequenced. No homologous genes were found between the contigs other than the GLOBOSA genes themselves, consistent with their identity as separate loci. Exons of the recently identified style-length determinant gene CYP734A50 were identified on one end of the contig containing PvGLO2 and these genes are adjacent in the genome, suggesting that PvGLO2 lies either within or at least very close to the S-locus. Current evidence suggests that both CYP734A50 and GLO2 are specific to the S-morph mating type and are hemizygous rather than heterozygous in the Primula genome. This finding contrasts classical models of the HSI locus, which propose that components of the S-locus are allelic, suggesting that these models may need to be reconsidered.


July 7, 2019  |  

The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation.

Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination.


July 7, 2019  |  

Complete fusion of a transposon and herpesvirus created the Teratorn mobile element in medaka fish.

Mobile genetic elements (e.g., transposable elements and viruses) display significant diversity with various life cycles, but how novel elements emerge remains obscure. Here, we report a giant (180-kb long) transposon, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn belongs to the piggyBac superfamily and retains the transposition activity. Remarkably, Teratorn is largely derived from a herpesvirus of the Alloherpesviridae family that could infect fish and amphibians. Genomic survey of Teratorn-like elements reveals that some of them exist as a fused form between piggyBac transposon and herpesvirus genome in teleosts, implying the generality of transposon-herpesvirus fusion. We propose that Teratorn was created by a unique fusion of DNA transposon and herpesvirus, leading to life cycle shift. Our study supports the idea that recombination is the key event in generation of novel mobile genetic elements. Teratorn is a large mobile genetic element originally identified in the small teleost fish medaka. Here, the authors show that Teratorn is derived from the fusion of a piggyBac superfamily DNA transposon and an alloherpesvirus and that it is widely found across teleost fish.


July 7, 2019  |  

Variations in 5S rDNAs in diploid and tetraploid offspring of red crucian carp × common carp.

The allotetraploid hybrid fish (4nAT) that was created in a previous study through an intergeneric cross between red crucian carp (Carassius auratus red var., ?) and common carp (Cyprinus carpio L., ?) provided an excellent platform to investigate the effect of hybridization and polyploidization on the evolution of 5S rDNA. The 5S rDNAs of paternal common carp were made up of a coding sequence (CDS) and a non-transcribed spacer (NTS) unit, and while the 5S rDNAs of maternal red crucian carp contained a CDS and a NTS unit, they also contained a variable number of interposed regions (IPRs). The CDSs of the 5S rDNAs in both parental fishes were conserved, while their NTS units seemed to have been subjected to rapid evolution.The diploid hybrid 2nF1 inherited all the types of 5S rDNAs in both progenitors and there were no signs of homeologous recombination in the 5S rDNAs of 2nF1 by sequencing of PCR products. We obtained two segments of 5S rDNA with a total length of 16,457 bp from allotetraploid offspring 4nAT through bacterial artificial chromosome (BAC) sequencing. Using this sequence together with the 5S rDNA sequences amplified from the genomic DNA of 4nAT, we deduced that the 5S rDNAs of 4nAT might be inherited from the maternal progenitor red crucian carp. Additionally, the IPRs in the 5S rDNAs of 4nAT contained A-repeats and TA-repeats, which was not the case for the IPRs in the 5S rDNAs of 2nF1. We also detected two signals of a 200-bp fragment of 5S rDNA in the chromosomes of parental progenitors and hybrid progenies by fluorescence in situ hybridization (FISH).We deduced that during the evolution of 5S rDNAs in different ploidy hybrid fishes, interlocus gene conversion events and tandem repeat insertion events might occurred in the process of polyploidization. This study provided new insights into the relationship among the evolution of 5S rDNAs, hybridization and polyploidization, which were significant in clarifying the genome evolution of polyploid fish.


July 7, 2019  |  

Heterogeneity of the Epstein-Barr virus major internal repeat reveals evolutionary mechanisms of EBV and a functional defect in the prototype EBV strain B95-8.

Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified both through co-evolution with its host, and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging, because of the large number and length of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat of EBV (IR1 or BamW repeats) from over 70 strains.Diversity of the latency protein EBNA-LP resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 ORF is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp), and one zone upstream of and two within BWRF1.IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as spontaneous mutation, with inter-strain recombination more common in tumour-derived viruses. This genetic exchange often incorporates regions of <1kb, and allelic gene conversion changes the frequency of small regions within the repeat, but not close to the flanks. These observations suggest that IR1 - and by extension EBV - diversifies through both recombination and breakpoint repair, while concerted evolution of IR1 is driven by gene conversion of small regions. Finally, the prototype EBV strain B95-8 contains four non-consensus variants within a single IR1 repeat unit, including a STOP codon in EBNA-LP. Repairing IR1 improves EBNA-LP levels and the quality of transformation by the B95-8 BAC.IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the world population, but only causes illness in a small minority. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity, to see if different strains have different disease impacts, have excluded regions of repeating sequence, as they are more technically challenging. Here we analyse the sequence of the largest repeat in EBV (IR1). We first characterised the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and suggest that tumour-associated viruses may be more likely to contain DNA mixed from two strains. Patterns of this mixing suggest that sequences can spread between strains (and also within the repeat) by copying sequence from another strain (or repeat unit) to repair DNA damage. Copyright © 2017 Ba abdullah et al.


July 7, 2019  |  

The unusual S locus of Leavenworthia is composed of two sets of paralogous loci.

The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


July 7, 2019  |  

Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17?×?10-8 ~3.87?×?10-8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.


July 7, 2019  |  

Map-based cloning of the fertility restoration locus Rfm1 in cultivated barley (Hordeum vulgare)

Hybridization technology has proven valuable in enhancing yields in many crops, but was only recently adopted in the small grain cereals. Hybrid varieties in barley (Hordeum vulgare) rely on the cytoplasmic male sterility (CMS) system msm1 derived from Hordeum vulgare ssp. spontaneum. The major restorer gene described for the msm1 system is known as Rfm1 and maps to the top of chromosome 6H. To gain further insight into mechanisms underlying male fertility restoration in barley, we used a map-based cloning approach to identify the nuclear gene involved in the restoration mechanism of this hybridization system. Taking advantage of the available genomic resources in barley in combination with a custom-made non-gridded BAC library developed from a restorer line, we cloned and sequenced the Rfm1 restorer locus. The characterization and annotation of the nucleotide sequence for the Rfm1 restorer allele allowed for the identification of the candidate gene for Rfm1. The Rfm1 locus carries a tandem repeat of a gene encoding a pentatricopeptide repeat (PPR) protein. Surprisingly, Rfm1 belongs to the PLS-DYW subfamily of PPR genes known for their involvement in RNA editing in plants organelles, but that to date have not been identified as restorer genes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.