X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Authors: Molin, William T and Wright, Alice A and Lawton-Rauh, Amy and Saski, Christopher A

The expanding number and global distributions of herbicide resistant weedy species threaten food, fuel, fiber and bioproduct sustainability and agroecosystem longevity. Amongst the most competitive weeds, Amaranthus palmeri S. Wats has rapidly evolved resistance to glyphosate primarily through massive amplification and insertion of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene across the genome. Increased EPSPS gene copy numbers results in higher titers of the EPSPS enzyme, the target of glyphosate, and confers resistance to glyphosate treatment. To understand the genomic unit and mechanism of EPSPS gene copy number proliferation, we developed and used a bacterial artificial chromosome (BAC) library from a highly resistant biotype to sequence the local genomic landscape flanking the EPSPS gene.By sequencing overlapping BACs, a 297 kb sequence was generated, hereafter referred to as the "EPSPS cassette." This region included several putative genes, dense clusters of tandem and inverted repeats, putative helitron and autonomous replication sequences, and regulatory elements. Whole genome shotgun sequencing (WGS) of two biotypes exhibiting high and no resistance to glyphosate was performed to compare genomic representation across the EPSPS cassette. Mapping of sequences for both biotypes to the reference EPSPS cassette revealed significant differences in upstream and downstream sequences relative to EPSPS with regard to both repetitive units and coding content between these biotypes. The differences in sequence may have resulted from a compounded-building mechanism such as repetitive transpositional events. The association of putative helitron sequences with the cassette suggests a possible amplification and distribution mechanism. Flow cytometry revealed that the EPSPS cassette added measurable genomic content.The adoption of glyphosate resistant cropping systems in major crops such as corn, soybean, cotton and canola coupled with excessive use of glyphosate herbicide has led to evolved glyphosate resistance in several important weeds. In Amaranthus palmeri, the amplification of the EPSPS cassette, characterized by a complex array of repetitive elements and putative helitron sequences, suggests an adaptive structural genomic mechanism that drives amplification and distribution around the genome. The added genomic content not found in glyphosate sensitive plants may be driving evolution through genome expansion.

Journal: BMC genomics
DOI: 10.1186/s12864-016-3336-4
Year: 2017

Read Publication

 

Stay
Current

Visit our blog »