X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:

Long-Read Sequencing Could Improve the Sensitivity and Precision of 16S Studies Says Jackson Lab Study

Wednesday, December 11, 2019

It’s time to revisit the way scientists are using 16S rRNA gene sequencing to study microorganisms, according to a team of Jackson Laboratory researchers. 

Popular targets for taxonomy and phylogeny studies because of their highly conserved nature, amplified sequences of the 16S ribosomal RNA genes can be compared with reference databases to determine the identity of the microorganisms that comprise a metagenomic sample. Sequences with a > 95% match are generally considered to represent the same genus, for example, while > 97% matches are considered the same species.

However, these matches are often made by sequencing only part of the nine-region, ~1500 bp 16S gene, either single regions like V4 or V6, or variable regions like V1–V3 or V3–V5, as done in the Human Microbiome Project. In a paper published recently in Nature Communications, Jethro S. Johnson, George M. Weinstock and colleagues point out that it is time to revisit this compromise that arose only because of past technological limitations. Given recent advances in long-read sequencing accuracy, the entire 16S gene should now be interrogated, the authors suggest.

Circular consensus sequencing (CCS, the method used in PacBio HiFi Sequencing), in particular, combined with sophisticated denoising algorithms, means it is now possible to sequence the entire gene with sufficient accuracy to discriminate among millions of sequence reads that differ by as little as one nucleotide, they write. 

“Together, these technological and methodological advances mean that for the first time, it is becoming possible to exploit the full discriminatory potential of 16S in a high-throughput manner,” the authors write. 

Using an in-silico dataset of 16S sequences taken from the Human Microbiome Project database, the researchers demonstrated that commonly targeted sub-regions were unable to recapitulate the taxonomic information present in the full 16S gene. 

Trees based on taxonomy of sequences present in the in-silico database. The same tree is provided for each variable region. The color of each branch reflects the proportion of sequences within each clade that could not be identified to species level.

“The V4 region performed worst, with 56% of in-silico amplicons failing to confidently match their sequence of origin at this taxonomic level,” they wrote. 

“Our simple in-silico experiment demonstrates that it is not valid to assume that ever finer clustering of these sub-regions will result in the improved taxonomic resolution necessary to reflect species.” 

They also found that different sub-regions showed bias in the bacterial taxa they were able to identify at the species level. For example, while V1-V3 gave good results for Escherichia and Shigella, good results for Klebsiella required the V3-V5 region, whereas Clostridium and Staphylococcus required V6-V9 sequencing. Since all of these strains may be present in the human gut, the only way to ensure good taxonomic identification of all species is to sequence the full gene from V1-V9.

However, the team points out that it may be possible to obtain even better taxonomic resolution, down to the strain level. Bacteria have between 1-15 copies of the 16S genes. While the number of copies is consistent within a species, the intragenomic variation among the copies is strain specific. The Jackson Lab team believes this intragenomic variation presents an opportunity.

For example, sufficient nucleotide variation exists to distinguish E. coli strain K-12 MG1655 from the infection-causing O157 Sakai strain. The team provides proof of concept evidence for this approach with full-length PacBio 16S sequencing data from 381 isolates selected from the Human Microbiome Project sample bank. They show that the vast majority of these bacteria can be uniquely assigned to a specific strain using the intragenomic 16S variation revealed by PacBio 16S HiFi data. 

“Thus, we argue that, when appropriately accounted for, multiple polymorphic 16S copies are not an inconvenience to be overlooked, rather they will enable the 16S gene to be used in strain-level microbiome analysis,” they add.

“Analysis of microbial communities at these taxonomic levels promises to provide a very different perspective to the one afforded by genus-level abundance estimates.”  

 

Learn more about the methods and workflow for PacBio full-length 16S sequencing.

Subscribe for blog updates:

Archives