Menu
July 19, 2019  |  

PacBio sequencing reveals transposable element as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae.

The sustainable cultivation of rice, which serves as staple food crop for more than half of the world’s population, is under serious threat due to the huge yield losses inflicted by rice blast disease caused by the globally destructive fungus Magnaporthe oryzae (Pyricularia oryzae) (Dean et al., 2012, Nalley et al., 2016, Deng et al., 2017). This filamentous ascomycete fungus is also capable of causing blast infection on other economically important cereal crops, including wheat, millet, and barley, making it the world’s most important plant pathogenic fungus (Zhong et al., 2016). The advent of whole-genome sequencing technology and the subsequent deployment of next-generation sequencing (NGS) strategies have successfully generated genome assemblies for over 50 isolates of M. oryzae, which have played an instrumental role in enhancing our understanding of how rice blast fungus undertakes host adaptation, host specificity, and host range expansion to overcome host resistance (Dean et al., 2005, Xue et al., 2012, Wu et al., 2015, Zhang et al., 2016). However, research findings obtained from comparative genomic studies conducted using the NGS-assembled genome do not present an in-depth account of the genomic features that contribute to the prevailing genomic variations among M. oryzae species, because NGS assemblies are highly fragmented and lack most of the lineage-specific (LS) regions, which are more plastic than the core genome and enriched with repeats and effector proteins (Raffaele and Kamoun, 2012, Faino et al., 2016).


July 19, 2019  |  

The composite 259-kb plasmid of Martelella mediterranea DSM 17316(T)-a natural replicon with functional RepABC modules from Rhodobacteraceae and Rhizobiaceae.

A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for Alphaproteobacteria. The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens. RepABC plasmids represent the most abundant alphaproteobacterial replicon type. The currently known homologous replication modules of rhizobia and Rhodobacteraceae are phylogenetically distinct. In this study, we surveyed type-strain genomes from the One Thousand Microbial Genomes (KMG-I) project and identified a roseobacter-specific RepABC-type operon in the draft genome of the marine rhizobium Martelella mediterranea DSM 17316(T). PacBio genome sequencing demonstrated the presence of three circular ECRs with sizes of 593, 259, and 170-kb. The rhodobacteral RepABC module is located together with a rhizobial equivalent on the intermediate sized plasmid pMM259, which likely originated in the fusion of a pre-existing rhizobial ECR with a conjugated roseobacter plasmid. Further evidence for horizontal gene transfer (HGT) is given by the presence of a roseobacter-specific type IV secretion system on the 259-kb plasmid and the rhodobacteracean origin of 62% of the genes on this plasmid. Functionality tests documented that the genuine rhizobial RepABC module from the Martelella 259-kb plasmid is only maintained in A. tumefaciens C58 (Rhizobiaceae) but not in Phaeobacter inhibens DSM 17395 (Rhodobacteraceae). Unexpectedly, the roseobacter-like replication system is functional and stably maintained in both host strains, thus providing evidence for a broader host range than previously proposed. In conclusion, pMM259 is the first example of a natural plasmid that likely mediates genetic exchange between roseobacters and rhizobia.


July 19, 2019  |  

De novo PacBio long-read and phased avian genome assemblies correct and add to reference genes generated with intermediate and short reads.

Reference-quality genomes are expected to provide a resource for studying gene structure, function, and evolution. However, often genes of interest are not completely or accurately assembled, leading to unknown errors in analyses or additional cloning efforts for the correct sequences. A promising solution is long-read sequencing. Here we tested PacBio-based long-read sequencing and diploid assembly for potential improvements to the Sanger-based intermediate-read zebra finch reference and Illumina-based short-read Anna’s hummingbird reference, 2 vocal learning avian species widely studied in neuroscience and genomics. With DNA of the same individuals used to generate the reference genomes, we generated diploid assemblies with the FALCON-Unzip assembler, resulting in contigs with no gaps in the megabase range, representing 150-fold and 200-fold improvements over the current zebra finch and hummingbird references, respectively. These long-read and phased assemblies corrected and resolved what we discovered to be numerous misassemblies in the references, including missing sequences in gaps, erroneous sequences flanking gaps, base call errors in difficult-to-sequence regions, complex repeat structure errors, and allelic differences between the 2 haplotypes. These improvements were validated by single long-genome and transcriptome reads and resulted for the first time in completely resolved protein-coding genes widely studied in neuroscience and specialized in vocal learning species. These findings demonstrate the impact of long reads, sequencing of previously difficult-to-sequence regions, and phasing of haplotypes on generating the high-quality assemblies necessary for understanding gene structure, function, and evolution.© The Authors 2017. Published by Oxford University Press.


July 19, 2019  |  

Genome sequence of the progenitor of the wheat D genome Aegilops tauschii.

Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.


July 19, 2019  |  

The Aegilops tauschii genome reveals multiple impacts of transposons.

Wheat is an important global crop with an extremely large and complex genome that contains more transposable elements (TEs) than any other known crop species. Here, we generated a chromosome-scale, high-quality reference genome of Aegilops tauschii, the donor of the wheat D genome, in which 92.5% sequences have been anchored to chromosomes. Using this assembly, we accurately characterized genic loci, gene expression, pseudogenes, methylation, recombination ratios, microRNAs and especially TEs on chromosomes. In addition to the discovery of a wave of very recent gene duplications, we detected that TEs occurred in about half of the genes, and found that such genes are expressed at lower levels than those without TEs, presumably because of their elevated methylation levels. We mapped all wheat molecular markers and constructed a high-resolution integrated genetic map corresponding to genome sequences, thereby placing previously detected agronomically important genes/quantitative trait loci (QTLs) on the Ae. tauschii genome for the first time.


July 19, 2019  |  

Single-molecule sequencing reveals the chromosome-scale genomic architecture of the nematode model organism Pristionchus pacificus.

The nematode Pristionchus pacificus is an established model for integrative evolutionary biology and comparative studies with Caenorhabditis elegans. While an existing genome draft facilitated the identification of several genes controlling various developmental processes, its high degree of fragmentation complicated virtually all genomic analyses. Here, we present a de novo genome assembly from single-molecule, long-read sequencing data consisting of 135 P. pacificus contigs. When combined with a genetic linkage map, 99% of the assembly could be ordered and oriented into six chromosomes. This allowed us to robustly characterize chromosomal patterns of gene density, repeat content, nucleotide diversity, linkage disequilibrium, and macrosynteny in P. pacificus. Despite widespread conservation of synteny between P. pacificus and C. elegans, we identified one major translocation from an autosome to the sex chromosome in the lineage leading to C. elegans. This highlights the potential of the chromosome-scale assembly for future genomic studies of P. pacificus. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.


July 19, 2019  |  

A high-throughput approach for identification of nontuberculous mycobacteria in drinking water reveals relationship between water age and Mycobacterium avium.

Nontuberculous mycobacteria (NTM) frequently detected in drinking water (DW) include species associated with human infections, as well as species rarely linked to disease. Methods for improved the recovery of NTM DNA and high-throughput identification of NTM are needed for risk assessment of NTM infection through DW exposure. In this study, different methods of recovering bacterial DNA from DW were compared, revealing that a phenol-chloroform DNA extraction method yielded two to four times as much total DNA and eight times as much NTM DNA as two commercial DNA extraction kits. This method, combined with high-throughput, single-molecule real-time sequencing of NTMrpoBgenes, allowed the identification of NTM to the species, subspecies, and (in some cases) strain levels. This approach was applied to DW samples collected from 15 households serviced by a chloraminated distribution system, with homes located in areas representing short (<24 h) and long (>24 h) distribution system residence times. Multivariate statistical analysis revealed that greater water age (i.e., combined distribution system residence time and home plumbing stagnation time) was associated with a greater relative abundance ofMycobacterium aviumsubsp.avium, one of the most prevalent NTM causing infections in humans. DW from homes closer to the treatment plant (with a shorter water age) contained more diverse NTM species, includingMycobacterium abscessusandMycobacterium chelonaeOverall, our approach allows NTM identification to the species and subspecies levels and can be used in future studies to assess the risk of waterborne infection by providing insight into the similarity between environmental and infection-associated NTM.IMPORTANCEAn extraction method for improved recovery of DNA from nontuberculous mycobacteria (NTM), combined with single-molecule real-time sequencing (PacBio) of NTMrpoBgenes, was used for high-throughput characterization of NTM species and in some cases strains in drinking water (DW). The extraction procedure recovered, on average, eight times as much NTM DNA and three times as much total DNA from DW as two widely used commercial DNA extraction kits. The combined DNA extraction and sequencing approach allowed high-throughput screening of DW samples to identify NTM, revealing that the relative abundance ofMycobacterium aviumsubsp.aviumincreased with water age. Furthermore, the two-step barcoding approach developed as part of the PacBio sequencing method makes this procedure highly adaptable, allowing it to be used for other target genes and species. Copyright © 2018 Haig et al.


July 19, 2019  |  

Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations.

Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel sequencing methods due to the complexity of the VNTR. We established long read single molecule real time sequencing (SMRT) targeted to the MUC1-VNTR as an alternative strategy to the snapshot assay. Our approach allows complete VNTR assembly, thereby enabling the detection of all variants residing within the VNTR and simultaneous determination of VNTR length. We present high resolution data on the VNTR architecture for a cohort of snapshot positive (n?=?9) and negative (n?=?7) ADTKD families. By SMRT sequencing we could confirm the diagnosis in all previously tested cases, reconstruct both VNTR alleles and determine the exact position of the causative variant in eight of nine families. This study demonstrates that precise positioning of the causative mutation(s) and identification of other coding and noncoding sequence variants in ADTKD-MUC1 is feasible. SMRT sequencing could provide a powerful tool to uncover potential factors encoded within the VNTR that associate with intra- and interfamilial phenotype variability of MUC1 related kidney disease.


July 19, 2019  |  

Accurate detection of complex structural variations using single-molecule sequencing.

Structural variations are the greatest source of genetic variation, but they remain poorly understood because of technological limitations. Single-molecule long-read sequencing has the potential to dramatically advance the field, although high error rates are a challenge with existing methods. Addressing this need, we introduce open-source methods for long-read alignment (NGMLR; https://github.com/philres/ngmlr ) and structural variant identification (Sniffles; https://github.com/fritzsedlazeck/Sniffles ) that provide unprecedented sensitivity and precision for variant detection, even in repeat-rich regions and for complex nested events that can have substantial effects on human health. In several long-read datasets, including healthy and cancerous human genomes, we discovered thousands of novel variants and categorized systematic errors in short-read approaches. NGMLR and Sniffles can automatically filter false events and operate on low-coverage data, thereby reducing the high costs that have hindered the application of long reads in clinical and research settings.


July 19, 2019  |  

Male-killing toxin in a bacterial symbiont of Drosophila.

Several lineages of symbiotic bacteria in insects selfishly manipulate host reproduction to spread in a population 1 , often by distorting host sex ratios. Spiroplasma poulsonii2,3 is a helical and motile, Gram-positive symbiotic bacterium that resides in a wide range of Drosophila species 4 . A notable feature of S. poulsonii is male killing, whereby the sons of infected female hosts are selectively killed during development1,2. Although male killing caused by S. poulsonii has been studied since the 1950s, its underlying mechanism is unknown. Here we identify an S. poulsonii protein, designated Spaid, whose expression induces male killing. Overexpression of Spaid in D. melanogaster kills males but not females, and induces massive apoptosis and neural defects, recapitulating the pathology observed in S. poulsonii-infected male embryos5-11. Our data suggest that Spaid targets the dosage compensation machinery on the male X chromosome to mediate its effects. Spaid contains ankyrin repeats and a deubiquitinase domain, which are required for its subcellular localization and activity. Moreover, we found a laboratory mutant strain of S. poulsonii with reduced male-killing ability and a large deletion in the spaid locus. Our study has uncovered a bacterial protein that affects host cellular machinery in a sex-specific way, which is likely to be the long-searched-for factor responsible for S. poulsonii-induced male killing.


July 19, 2019  |  

The highly heterogeneous methylated genomes and diverse restriction-modification systems of bloom-forming Microcystis.

The occurrence of harmful Microcystis blooms is increasing in frequency in a myriad of freshwater ecosystems. Despite considerable research pertaining to the cause and nature of these blooms, the molecular mechanisms behind the cosmopolitan distribution and phenotypic diversity in Microcystis are still unclear. We compared the patterns and extent of DNA methylation in three strains of Microcystis, PCC 7806SL, NIES-2549 and FACHB-1757, using Single Molecule Real-Time (SMRT) sequencing technology. Intact restriction-modification (R-M) systems were identified from the genomes of these strains, and from two previously sequenced strains of Microcystis, NIES-843 and TAIHU98. A large number of methylation motifs and R-M genes were identified in these strains, which differ substantially among different strains. Of the 35 motifs identified, eighteen had not previously been reported. Strain NIES-843 contains a larger number of total putative methyltransferase genes than have been reported previously from any bacterial genome. Genomic comparisons reveal that methyltransferases (some partial) may have been acquired from the environment through horizontal gene transfer. Copyright © 2018 Elsevier B.V. All rights reserved.


July 19, 2019  |  

De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1.

Myotonic dystrophy type 1 (DM1) is a multisystem disorder, caused by expansion of a CTG trinucleotide repeat in the 3′-untranslated region of the DMPK gene. The repeat expansion is somatically unstable and tends to increase in length with time, contributing to disease progression. In some individuals, the repeat array is interrupted by variant repeats such as CCG and CGG, stabilising the expansion and often leading to milder symptoms. We have characterised three families, each including one person with variant repeats that had arisen de novo on paternal transmission of the repeat expansion. Two individuals were identified for screening due to an unusual result in the laboratory diagnostic test, and the third due to exceptionally mild symptoms. The presence of variant repeats in all three expanded alleles was confirmed by restriction digestion of small pool PCR products, and allele structures were determined by PacBio sequencing. Each was different, but all contained CCG repeats close to the 3′-end of the repeat expansion. All other family members had inherited pure CTG repeats. The variant repeat-containing alleles were more stable in the blood than pure alleles of similar length, which may in part account for the mild symptoms observed in all three individuals. This emphasises the importance of somatic instability as a disease mechanism in DM1. Further, since patients with variant repeats may have unusually mild symptoms, identification of these individuals has important implications for genetic counselling and for patient stratification in DM1 clinical trials.


July 19, 2019  |  

Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes.

Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183?Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution.


July 7, 2019  |  

In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire.

High-throughput immune repertoire sequencing has emerged as a critical step in the understanding of adaptive responses following infection or vaccination or in autoimmunity. However, determination of native antibody variable heavy-light pairs (VH-VL pairs) remains a major challenge, and no technologies exist to adequately interrogate the >1 × 10(6) B cells in typical specimens. We developed a low-cost, single-cell, emulsion-based technology for sequencing antibody VH-VL repertoires from >2 × 10(6) B cells per experiment with demonstrated pairing precision >97%. A simple flow-focusing apparatus was used to sequester single B cells into emulsion droplets containing lysis buffer and magnetic beads for mRNA capture; subsequent emulsion RT-PCR generated VH-VL amplicons for next-generation sequencing. Massive VH-VL repertoire analyses of three human donors provided new immunological insights including (i) the identity, frequency and pairing propensity of shared, or ‘public’, VL genes, (ii) the detection of allelic inclusion (an implicated autoimmune mechanism) in healthy individuals and (iii) the occurrence of antibodies with features, in terms of gene usage and CDR3 length, associated with broadly neutralizing antibodies to rapidly evolving viruses such as HIV-1 and influenza.


July 7, 2019  |  

Draft genome sequence of Pseudoalteromonas luteoviolacea HI1, determined using Roche 454 and PacBio single-molecule real-time hybrid sequencing.

We report here the 6.0-Mb draft genome assembly of Pseudoalteromonas luteoviolacea strain HI1 using Roche 454 and PacBio single-molecule real-time hybrid-sequencing analysis. This strain is of biological importance since it has the capacity to induce the settlement and metamorphosis of the serpulid polychaete Hydroides elegans and the coral Pocillopora damicornis. Copyright © 2015 Asahina and Hadfield.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.