Menu
July 7, 2019

Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing.

Pseudomonas aeruginosa is a common nosocomial pathogen responsible for significant morbidity and mortality internationally. Patients may become colonised or infected with P. aeruginosa after exposure to contaminated sources within the hospital environment. The aim of this study was to determine whether whole-genome sequencing (WGS) can be used to determine the source in a cohort of burns patients at high risk of P. aeruginosa acquisition.An observational prospective cohort study.Burns care ward and critical care ward in the UK.Patients with >7% total burns by surface area were recruited into the study.All patients were screened for P. aeruginosa on admission and samples taken from their immediate environment, including water. Screening patients who subsequently developed a positive P. aeruginosa microbiology result were subject to enhanced environmental surveillance. All isolates of P. aeruginosa were genome sequenced. Sequence analysis looked at similarity and relatedness between isolates.WGS for 141 P. aeruginosa isolates were obtained from patients, hospital water and the ward environment. Phylogenetic analysis revealed eight distinct clades, with a single clade representing the majority of environmental isolates in the burns unit. Isolates from three patients had identical genotypes compared with water isolates from the same room. There was clear clustering of water isolates by room and outlet, allowing the source of acquisitions to be unambiguously identified. Whole-genome shotgun sequencing of biofilm DNA extracted from a thermostatic mixer valve revealed this was the source of a P. aeruginosa subpopulation previously detected in water. In the remaining two cases there was no clear link to the hospital environment.This study reveals that WGS can be used for source tracking of P. aeruginosa in a hospital setting, and that acquisitions can be traced to a specific source within a hospital ward. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


July 7, 2019

De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms.

Horseweed (Conyza canadensis), a member of the Compositae (Asteraceae) family, was the first broadleaf weed to evolve resistance to glyphosate. Horseweed, one of the most problematic weeds in the world, is a true diploid (2n = 2x = 18), with the smallest genome of any known agricultural weed (335 Mb). Thus, it is an appropriate candidate to help us understand the genetic and genomic bases of weediness. We undertook a draft de novo genome assembly of horseweed by combining data from multiple sequencing platforms (454 GS-FLX, Illumina HiSeq 2000, and PacBio RS) using various libraries with different insertion sizes (approximately 350 bp, 600 bp, 3 kb, and 10 kb) of a Tennessee-accessed, glyphosate-resistant horseweed biotype. From 116.3 Gb (approximately 350× coverage) of data, the genome was assembled into 13,966 scaffolds with 50% of the assembly = 33,561 bp. The assembly covered 92.3% of the genome, including the complete chloroplast genome (approximately 153 kb) and a nearly complete mitochondrial genome (approximately 450 kb in 120 scaffolds). The nuclear genome is composed of 44,592 protein-coding genes. Genome resequencing of seven additional horseweed biotypes was performed. These sequence data were assembled and used to analyze genome variation. Simple sequence repeat and single-nucleotide polymorphisms were surveyed. Genomic patterns were detected that associated with glyphosate-resistant or -susceptible biotypes. The draft genome will be useful to better understand weediness and the evolution of herbicide resistance and to devise new management strategies. The genome will also be useful as another reference genome in the Compositae. To our knowledge, this article represents the first published draft genome of an agricultural weed.© 2014 American Society of Plant Biologists. All Rights Reserved.


July 7, 2019

Bacillary dysentery from World War 1 and NCTC1, the first bacterial isolate in the National Collection.

In early 1915, a 28-year-old man arrived at No 14 Stationary Hospital in Wimereux, France. Although no clinical records remain, we believe he would have presented with bloody diarrhoea and severe abdominal cramping, and he was diagnosed with dysentery. On March 13, 1915, the patient, who we believe was Private Ernest Cable of the 2nd Battalion of the East Surrey Regiment (appendix), died. Lieutenant William Broughton-Alcock, whose military records1 identify him as a bacteriologist for No 14 Stationary Hospital, collected this isolate—later identified as a Shigella flexneri serotype 2a bacterium—which was the first bacterial isolate deposited in the UK National Collection of Type Cultures (NCTC)2 using the original isolate name Cable.


July 7, 2019

Complete genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344.

Pseudomonas pseudoalcaligenes CECT5344, a Gram-negative bacterium isolated from the Guadalquir River (Córdoba, Spain), is able to utilize different cyano-derivatives. Here, the complete genome sequence of P. pseudoalcaligenes CECT5344 harboring a 4,686,340bp circular chromosome encoding 4513 genes and featuring a GC-content of 62.34% is reported. Necessarily, remaining gaps in the genome had to be closed by assembly of few long reads obtained from PacBio single molecule real-time sequencing. Here, the first complete genome sequence for the species P. pseudoalcaligenes is presented. Copyright © 2014 Elsevier B.V. All rights reserved.


July 7, 2019

Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens.

Pantoea agglomerans R190, isolated from an apple orchard, showed antibacterial activity against various spoilage bacteria, including Pectobacterium carotovorum subsp. carotovorum, and foodborne pathogens such as Escherichia coli O157:H7. Here, we report the genome sequence of P. agglomerans R190. This report will raise the value of P. agglomerans as an agent for biocontrol of disease. Copyright © 2014. Published by Elsevier B.V.


July 7, 2019

The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille.

The Bacillus ACT group includes three important pathogenic species of Bacillus: anthracis, cereus and thuringiensis. We characterized three virulent bacteriophages, Bastille, W.Ph. and CP-51, that infect various strains of these three species. We have determined the complete genome sequences of CP-51, W.Ph. and Bastille, and their physical genome structures. The CP-51 genome sequence could only be obtained using a combination of conventional and second and third next generation sequencing technologies – illustrating the problems associated with sequencing highly modified DNA. We present evidence that the generalized transduction facilitated by CP-51 is independent of a specific genome structure, but likely due to sporadic packaging errors of the terminase. There is clear correlation of the genetic and morphological features of these phages validating their placement in the Spounavirinae subfamily (SPO1-related phages) of the Myoviridae. This study also provides tools for the development of phage-based diagnostics/therapeutics for this group of pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.


July 7, 2019

De novo assembly and characterization of the complete chloroplast genome of radish (Raphanus sativus L.).

Radish (Raphanus sativus L.) is an edible root vegetable crop that is cultivated worldwide and whose genome has been sequenced. Here we report the complete nucleotide sequence of the radish cultivar WK10039 chloroplast (cp) genome, along with a de novo assembly strategy using whole genome shotgun sequence reads obtained by next generation sequencing. The radish cp genome is 153,368 bp in length and has a typical quadripartite structure, composed of a pair of inverted repeat regions (26,217 bp each), a large single copy region (83,170 bp), and a small single copy region (17,764 bp). The radish cp genome contains 87 predicted protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence analysis revealed the presence of 91 simple sequence repeats (SSRs) in the radish cp genome. Phylogenetic analysis of 62 protein-coding gene sequences from the 17 cp genomes of the Brassicaceae family suggested that the radish cp genome is most closely related to the cp genomes of Brassica rapa and Brassicanapus. Comparisons with the B. rapa and B. napus cp genomes revealed highly divergent intergenic sequences and introns that can potentially be developed as diagnostic cp markers. Synonymous and nonsynonymous substitutions of cp genes suggested that nucleotide substitutions have occurred at similar rates in most genes. The complete sequence of the radish cp genome would serve as a valuable resource for the development of new molecular markers and the study of the phylogenetic relationships of Raphanus species in the Brassicaceae family. Copyright © 2014 Elsevier B.V. All rights reserved.


July 7, 2019

Get your high-quality low-cost genome sequence.

The study of whole-genome sequences has become essential for almost all branches of biological research. Next-generation sequencing (NGS) has revolutionized the scalability, speed, and resolution of sequencing and brought genomic science within reach of academic laboratories that study non-model organisms. Here, we show that a high-quality draft genome of a eukaryote can be obtained at relatively low cost by exploiting a hybrid combination of sequencing strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.


July 7, 2019

The characterization of goat genetic diversity: Towards a genomic approach

The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers for each of the main livestock species, FAO has promoted the meta-analysis of local datasets, to achieve a global view of molecular genetic diversity. Analysis within the EU Globaldiv project of two large goat microsatellite datasets produced by the Econogene Consortium and the IAEA CRP–Asia Consortium, respectively, has generated a picture of goat diversity across continents. This indicates a gradient of decreasing diversity from the domestication centre towards Europe and Asia, a clear phylogeographic structure at the continental and regional levels, and in Asia a limited genetic differentiation among local breeds. The development of SNP panels that assay thousands of markers and the whole genome sequencing of livestock permit an affordable use of genomic technologies in all livestock species, goats included. Preliminary data from the Italian Goat Consortium indicate that the SNP panel developed for this species is highly informative. The existing panel can be improved by integrating additional SNPs identified from the whole genome sequence alignment of goats adapted to extreme climates. Part of this effort is being achieved by international projects (e.g. EU FP7 NextGen and 3SR projects), but a fair representation of the global diversity in goats requires a large panel of samples (i.e. as in the recently launched 1000 cattle genomes initiative). Genomic technologies offer new strategies to investigate complex traits difficult to measure. For example, the comparison of patterns of diversity among the genomes in selected groups of animals (e.g. adapted to different environments) and the integration of genome-wide diversity with new GIScience-based methods are able to identify molecular markers associated with genomic regions of putative importance in adaptation and thus pave the way for the identification of causative genes. Goat breeds adapted to different production systems in extreme and harsh environments will play an important role in this process. The new sequencing technologies also permit the analysis of the entire mitochondrial genome at maximum resolution. The complete mtDNA sequence is now the common standard format for the investigation of human maternal lineages. A preliminary analysis of the complete goat mtDNA genome supports a single Neolithic origin of domestic goats rather than multiple domestication events in different geographic areas.


July 7, 2019

Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from Neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting.

NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying blaNDM-1. The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although blaNDM variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention. Copyright © 2014 Stoesser et al.


July 7, 2019

Diversification of bacterial genome content through distinct mechanisms over different timescales.

Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent these viruses sweeping through populations. Correspondingly, two loci encoding Type I restriction-modification systems able to change their specificity over short timescales through intragenomic recombination are ubiquitous across the collection. Hence short-term pneumococcal variation is characterized by movement of phage and intragenomic rearrangements, with the slower transfer of stable loci distinguishing lineages.


July 7, 2019

Whole-genome assemblies of 56 Burkholderia species.

Burkholderia is a genus of betaproteobacteria that includes three notable human pathogens: B. cepacia, B. pseudomallei, and B. mallei. While B. pseudomallei and B. mallei are considered potential biowarfare agents, B. cepacia infections are largely limited to cystic fibrosis patients. Here, we present 56 Burkholderia genomes from 8 distinct species. Copyright © 2014 Daligault et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.