Menu
July 7, 2019

Hammondia hammondi, an avirulent relative of Toxoplasma gondii, has functional orthologs of known T. gondii virulence genes.

Toxoplasma gondii is a ubiquitous protozoan parasite capable of infecting all warm-blooded animals, including humans. Its closest extant relative, Hammondia hammondi, has never been found to infect humans and, in contrast to T. gondii, is highly attenuated in mice. To better understand the genetic bases for these phenotypic differences, we sequenced the genome of a H. hammondi isolate (HhCatGer041) and found the genomic synteny between H. hammondi and T. gondii to be >95%. We used this genome to determine the H. hammondi primary sequence of two major T. gondii mouse virulence genes, TgROP5 and TgROP18. When we expressed these genes in T. gondii, we found that H. hammondi orthologs of TgROP5 and TgROP18 were functional. Similar to T. gondii, the HhROP5 locus is expanded, and two distinct HhROP5 paralogs increased the virulence of a T. gondii TgROP5 knockout strain. We also identified a 107 base pair promoter region, absent only in type III TgROP18, which is necessary for TgROP18 expression. This result indicates that the ROP18 promoter was active in the most recent common ancestor of these two species and that it was subsequently inactivated in progenitors of the type III lineage. Overall, these data suggest that the virulence differences between these species are not solely due to the functionality of these key virulence factors. This study provides evidence that other mechanisms, such as differences in gene expression or the lack of currently uncharacterized virulence factors, may underlie the phenotypic differences between these species.


July 7, 2019

Finished bacterial genomes from shotgun sequence data.

Exceptionally accurate genome reference sequences have proven to be of great value to microbial researchers. Thus, to date, about 1800 bacterial genome assemblies have been “finished” at great expense with the aid of manual laboratory and computational processes that typically iterate over a period of months or even years. By applying a new laboratory design and new assembly algorithm to 16 samples, we demonstrate that assemblies exceeding finished quality can be obtained from whole-genome shotgun data and automated computation. Cost and time requirements are thus dramatically reduced.


July 7, 2019

Structure of the type IV secretion system in different strains of Anaplasma phagocytophilum.

Anaplasma phagocytophilum is an intracellular organism in the Order Rickettsiales that infects diverse animal species and is causing an emerging disease in humans, dogs and horses. Different strains have very different cell tropisms and virulence. For example, in the U.S., strains have been described that infect ruminants but not dogs or rodents. An intriguing question is how the strains of A. phagocytophilum differ and what different genome loci are involved in cell tropisms and/or virulence. Type IV secretion systems (T4SS) are responsible for translocation of substrates across the cell membrane by mechanisms that require contact with the recipient cell. They are especially important in organisms such as the Rickettsiales which require T4SS to aid colonization and survival within both mammalian and tick vector cells. We determined the structure of the T4SS in 7 strains from the U.S. and Europe and revised the sequence of the repetitive virB6 locus of the human HZ strain.Although in all strains the T4SS conforms to the previously described split loci for vir genes, there is great diversity within these loci among strains. This is particularly evident in the virB2 and virB6 which are postulated to encode the secretion channel and proteins exposed on the bacterial surface. VirB6-4 has an unusual highly repetitive structure and can have a molecular weight greater than 500,000. For many of the virs, phylogenetic trees position A. phagocytophilum strains infecting ruminants in the U.S. and Europe distant from strains infecting humans and dogs in the U.S.Our study reveals evidence of gene duplication and considerable diversity of T4SS components in strains infecting different animals. The diversity in virB2 is in both the total number of copies, which varied from 8 to 15 in the herein characterized strains, and in the sequence of each copy. The diversity in virB6 is in the sequence of each of the 4 copies in the single locus and the presence of varying numbers of repetitive units in virB6-3 and virB6-4. These data suggest that the T4SS should be investigated further for a potential role in strain virulence of A. phagocytophilum.


July 7, 2019

A hybrid approach for the automated finishing of bacterial genomes.

Advances in DNA sequencing technology have improved our ability to characterize most genomic diversity. However, accurate resolution of large structural events is challenging because of the short read lengths of second-generation technologies. Third-generation sequencing technologies, which can yield longer multikilobase reads, have the potential to address limitations associated with genome assembly. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at >99.9% accuracy. Complex regions with clinically relevant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 cholera reference strain, we obtained 14 scaffolds of greater than 1 kb for the experimental data and 8 scaffolds of greater than 1 kb for the simulated data, which allowed us to correct several errors in contigs assembled from the short-read data alone. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly.


July 7, 2019

Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011.

The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May-July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak.


July 7, 2019

Complete genome sequence of Liberibacter crescens BT-1.

Liberibacter crescens BT-1, a Gram-negative, rod-shaped bacterial isolate, was previously recovered from mountain papaya to gain insight on Huanglongbing (HLB) and Zebra Chip (ZC) diseases. The genome of BT-1 was sequenced at the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida. A finished assembly and annotation yielded one chromosome with a length of 1,504,659 bp and a G+C content of 35.4%. Comparison to other species in the Liberibacter genus, L. crescens has many more genes in thiamine and essential amino acid biosynthesis. This likely explains why L. crescens BT-1 is culturable while the known Liberibacter strains have not yet been cultured. Similar to Candidatus L. asiaticus psy62, the L. crescens BT-1 genome contains two prophage regions.


July 7, 2019

Bacteriophage P70: unique morphology and unrelatedness to other Listeria bacteriophages.

Listeria monocytogenes is an important food-borne pathogen, and its bacteriophages find many uses in detection and biocontrol of its host. The novel broad-host-range virulent phage P70 has a unique morphology with an elongated capsid. Its genome sequence was determined by a hybrid sequencing strategy employing Sanger and PacBio techniques. The P70 genome contains 67,170 bp and 119 open reading frames (ORFs). Our analyses suggest that P70 represents an archetype of virus unrelated to other known Listeria bacteriophages.


July 7, 2019

Real-time sequencing.

This month’s Genome Watch describes the impact of next-generation sequencing on the ‘real-time’ analysis of pathogen genomes during outbreaks.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.