Menu
June 1, 2021  |  

Whole gene sequencing of KIR-3DL1 with SMRT Sequencing and the distribution of allelic variants in different ethnic groups

The killer-cell immunoglobulin-like receptor (KIR) gene family are involved in immune modulation during viral infection, autoimmune disease and in allogeneic stem cell transplantation. Most KIR gene diversity studies and their impact on the transplant outcome is performed by gene absence/presence assays. However, it is well known that KIR gene allelic variations have biological significance. Allele level typing of KIR genes has been very challenging until recently due to the homologous nature of those genes and very long intronic sequences. SMRT (Single Molecule Real-Time) Sequencing generates average long reads of 10 to 15 kb and allows us to obtain in-phase long sequence reads. We have developed a PCR assay for SMRT Sequencing on the PacBio RS II platform in our lab for 3DL1 whole gene sequencing. This approach allows us to obtain allele level typing for 3DL1 genes and could serve as a model to type other KIR genes at allelic level.


June 1, 2021  |  

Multiplex target enrichment using barcoded multi-kilobase fragments and probe-based capture technologies

Target enrichment capture methods allow scientists to rapidly interrogate important genomic regions of interest for variant discovery, including SNPs, gene isoforms, and structural variation. Custom targeted sequencing panels are important for characterizing heterogeneous, complex diseases and uncovering the genetic basis of inherited traits with more uniform coverage when compared to PCR-based strategies. With the increasing availability of high-quality reference genomes, customized gene panels are readily designed with high specificity to capture genomic regions of interest, thus enabling scientists to expand their research scope from a single individual to larger cohort studies or population-wide investigations. Coupled with PacBio® long-read sequencing, these technologies can capture 5 kb fragments of genomic DNA (gDNA), which are useful for interrogating intronic, exonic, and regulatory regions, characterizing complex structural variations, distinguishing between gene duplications and pseudogenes, and interpreting variant haplotyes. In addition, SMRT® Sequencing offers the lowest GC-bias and can sequence through repetitive regions. We demonstrate the additional insights possible by using in-depth long read capture sequencing for key immunology, drug metabolizing, and disease causing genes such as HLA, filaggrin, and cancer associated genes.


June 1, 2021  |  

Collection of major HLA allele sequences in Japanese population toward the precise NGS based HLA DNA typing at the field 4 level

We previously reported on the use of the Ion PGM next generation sequencing (NGS) platform to genotype HLA class I and class II genes by a super-high resolution, single-molecule, sequence-based typing (SS-SBT) method (Shiina et al. 2012). However, HLA alleles could not be assigned at the field 4 level at some HLA loci such as DQA1, DPA1 and DPB1 because the SNP and indel densities were too low to identify and separate both of the phases. In this regard, we have now added the single molecule, real-time (SMRT) DNA sequencer PacBio RS II method to our analysis in order to test whether it might determine the HLA allele sequences in some of the loci with which we previously had difficulties. In this study, we report on sequence-based genotyping of entire HLA gene sequences from the promoter-enhancer region to 3’UTR of the major HLA loci (A, B, C, DRB1, DRB345, DQA1, DQB1, DPA1 and DPB1) using 46 Japanese reference subjects who represented a distribution of more than 99.5% of the HLA alleles at each of the HLA loci and the PacBio RS II and Ion PGM systems.


June 1, 2021  |  

Analysis of 37,000 Caucasian samples reveals tight linkage between SNP RS9277534 and high resolution typing of HLA-DPB1

HLA-DPB1 mismatching between patients and unrelated donors is known to increase the risk of acute graft-versus-host-disease (GvHD) after hematopoietic stem cell transplantation. If only HLA-DPB1 mismatched donors are available, the genotype defined by the Single Nucleotide Polymorphism (SNP) rs9277534 can be used to select mismatched donors that are well-tolerated. However, since rs9277534 resides within the 3’ untranslated region (UTR), it usually is not analyzed during DPB1 routine typing.


June 1, 2021  |  

Effect of coverage depth and haplotype phasing on structural variant detection with PacBio long reads

Each human genome has thousands of structural variants compared to the reference assembly, up to 85% of which are difficult or impossible to detect with Illumina short reads and are only visible with long, multi-kilobase reads. The PacBio RS II and Sequel single molecule, real-time (SMRT) sequencing platforms have made it practical to generate long reads at high throughput. These platforms enable the discovery of structural variants just as short-read platforms did for single nucleotide variants. Numerous software algorithms call structural variants effectively from PacBio long reads, but algorithm sensitivity is lower for insertion variants and all heterozygous variants. Furthermore, the impact of coverage depth and read lengths on sensitivity is not fully characterized. To quantify how zygosity, coverage depth, and read lengths impact the sensitivity of structural variant detection, we obtained high coverage PacBio sequences for three human samples: haploid CHM1, diploid NA12878, and diploid SK-BR-3. For each dataset, reads were randomly subsampled to titrate coverage from 0.5- to 50-fold. The structural variants detected at each coverage were compared to the set at “full” 50-fold coverage. For the diploid samples, additional titrations were performed with reads first partitioned by phase using single nucleotide variants for essentially haploid structural variant discovery. Even at low coverages (1- to 5-fold), PacBio long reads reveal hundreds of structural variants that are not seen in deep 50-fold Illumina whole genome sequences. At moderate 10-fold PacBio coverage, a majority of structural variants are detected. Sensitivity begins to level off at around 40-fold coverage, though it does not fully saturate before 50-fold. Phasing improves sensitivity for all variant types, especially at moderate 10- to 20-fold coverage. Long reads are an effective tool to identify and phase structural variants in the human genome. The majority of variants are detected at moderate 10-fold coverage, and even extremely low long-read coverage (1- to 5-fold) reveals variants that are invisible to short-read sequencing. Performance will continue to improve with better software and longer reads, which will empower studies to connect structural variants to healthy and disease traits in the human population.


June 1, 2021  |  

The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

The major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, is a highly diverse gene family with a key role in immune response to disease; and has been implicated in auto-immune disease, cancer, infectious disease susceptibility, and vaccine response. It has clinical importance in the field of solid organ and bone marrow transplantation, where donors and recipient matching of HLA types is key to transplanted organ outcomes. The Sanger based typing (SBT) methods currently used in clinical practice do not capture the full diversity across this region, and require specific reference sequences to deconvolute ambiguity in HLA types. However, reference databases are based largely on European populations, and the full extent of diversity in Africa remains poorly understood. Here, we present the first systematic characterisation of HLA diversity within Africa in the pilot phase of the MHC Diversity in Africa Project, together with an evaluation of methods to carry out scalable cost-effective, as well as reliable, typing of this region in African populations.To sample a geographically representative panel of African populations we obtained 125 samples, 25 each from the Zulu (South Africa), Igbo (Nigeria), Kalenjin (Kenya), Moroccan and Ashanti (Ghana) groups. For methods validation we included two controls from the International Histocompatibility Working Group (IHWG) collection with known typing information. Sanger typing and Illumina HiSeq X sequencing of these samples indicated potentially novel Class I and Class II alleles; however, we found poor correlation between HiSeq X sequencing and SBT for both classes. Long Range PCR and high resolution PacBio RS-II typing of 4 of these samples identified 7 novel Class II alleles, highlighting the high levels of diversity in these populations, and the need for long read sequencing approaches to characterise this comprehensively. We have now expanded this approach to the entire pilot set of 125 samples. We present these confirmed types and discuss a workflow for scaling this to 5000 individuals across Africa.The large number of new alleles identified in our pilot suggests the high level of African HLA diversity and the utility of high resolution methods. The MDAP project will provide a framework for accurate HLA typing, in addition to providing an invaluable resource for imputation in GWAS, boosting power to identify and resolve HLA disease associations.


June 1, 2021  |  

Target enrichment using a neurology panel for 12 barcoded genomic DNA samples on the PacBio SMRT Sequencing platform

Target enrichment is a powerful tool for studies involved in understanding polymorphic SNPs with phasing, tandem repeats, and structural variations. With increasing availability of reference genomes, researchers can easily design a cost-effective targeted investigation with custom probes specific to regions of interest. Using PacBio long-read technology in conjunction with probe capture, we were able to sequence multi-kilobase enriched regions to fully investigate intronic and exonic regions, distinguish haplotypes, and characterize structural variations. Furthermore, we demonstrate this approach is advantageous for studying complex genomic regions previously inaccessible through other sequencing platforms. In the present work, 12 barcoded genomic DNA (gDNA) samples were sheared to 6 kb for target enrichment analysis using the Neurology panel provided by Roche NimbleGen. Probe-captured DNA was used to make SMRTbell libraries for SMRT Sequencing on the PacBio RS II. Our results demonstrate the ability to multiplex 12 samples and achieve 1300x enrichment of targeted regions. In addition, we achieved an even representation of on-target rate of 70% across the 12 barcoded genomic DNA samples.


June 1, 2021  |  

“SMRTer Confirmation”: Scalable clinical read-through variant confirmation using the Pacific Biosciences SMRT Sequencing platform

Next-generation sequencing (NGS) has significantly improved the cost and turnaround time for diagnostic genetic tests. ACMG recommends variant confirmation by an orthogonal method, unless sufficiently high sensitivity and specificity can be demonstrated using NGS alone. Most NGS laboratories make extensive use of Sanger sequencing for secondary confirmation of single nucleotide variants (SNVs) and indels, representing a large fraction of the cost and time required to deliver high quality genetic testing data to clinicians and patients. Despite its established data quality, Sanger is not a high-throughput method by today’s standards from either an assay or analysis standpoint as it can involve manual review of Sanger traces and is not amenable to multiplexing. Toward a scalable solution for confirmation, Invitae has developed a fully automated and LIMS-tracked assay and informatics pipeline that utilizes the Pacific Biosciences SMRT sequencing platform. Invitae’s pipeline generates PCR amplicons that encompass the variant(s) of interest, which are converted to closed DNA structures (SMRTbells) and sequenced in pools of 96 per SMRTcell. Each amplicon is appended with a 16nt barcode that encodes the patient and variant IDs. Per-sample de-multiplexing, alignment, variant calling, and confirmation resolution are handled via an automated pipeline. The confirmation process was validated by analyzing 243 clinical SNVs and indels in parallel with the gold standard Sanger sequencing method. Amplicons were sequenced and analyzed in technical replicates to demonstrate reproducibility. In this study, the PacBio-based confirmation pipeline demonstrated high reproducibility (97.5%), and outperformed Sanger in the fraction of primary NGS variants confirmed (PacBio = 93.4% and 94.7% confirmed across two replicates, Sanger = 84.8%) while having 100% concordance of confirmation status among overlapping confirmation calls.


June 1, 2021  |  

Screening and characterization of causative structural variants for bipolar disorder in a significantly linked chromosomal region onXq24-q27 in an extended pedigree from a genetic isolate

Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.


June 1, 2021  |  

Structural variant detection with low-coverage Pacbio sequencing

Despite amazing progress over the past quarter century in the technology to detect genetic variants, intermediate-sized structural variants (50 bp to 50 kb) have remained difficult to identify. Such variants are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent de novo assemblies of human genomes have demonstrated the power of PacBio Single Molecule, Real-Time (SMRT) Sequencing to fill this technology gap and sensitively identify structural variants in the human genome. While de novo assembly is the ideal method to identify variants in a genome, it requires high depth of coverage. A structural variant discovery approach that utilizes lower coverage would facilitate evaluation of large patient and population cohorts. Here we introduce such an approach and apply it to 10-fold coverage of several human genomes generated on the PacBio Sequel System. To identify structural variants in low-fold coverage whole genome sequencing data, we apply a reference-based, re-sequencing workflow. First, reads are mapped to the human reference genome with a local aligner. The local alignments often end at structural variant loci. To connect co-linear local alignments across structural variants, we apply a novel algorithm that merges alignments into “chains” and refines the alignment edges. Then, the chained alignments are scanned for windows with an excess of insertions or deletions to identify candidate structural variant loci. Finally, the read support at each putative variant locus is evaluated to produce a variant call. Single nucleotide information is incorporated to phase and evaluate the zygosity of each structural variant. In 10-fold coverage human genome sequence, we identify the vast majority of the structural variants found by de novo assembly, thus demonstrating the power of low-fold coverage SMRT Sequencing to affordably and effectively detect structural variants.


June 1, 2021  |  

Screening for causative structural variants in neurological disorders using long-read sequencing

Over the past decades neurological disorders have been extensively studied producing a large number of candidate genomic regions and candidate genes. The SNPs identified in these studies rarely represent the true disease-related functional variants. However, more recently a shift in focus from SNPs to larger structural variants has yielded breakthroughs in our understanding of neurological disorders.Here we have developed candidate gene screening methods that combine enrichment of long DNA fragments with long-read sequencing that is optimized for structural variation discovery. We have also developed a novel, amplification-free enrichment technique using the CRISPR/Cas9 system to target genomic regions.We sequenced gDNA and full-length cDNA extracted from the temporal lobe for two Alzheimer’s patients for 35 GWAS candidate genes. The multi-kilobase long reads allowed for phasing across the genes and detection of a broad range of genomic variants including SNPs to multi-kilobase insertions, deletions and inversions. In the full-length cDNA data we detected differential allelic isoform complexity, novel exons as well as transcript isoforms. By combining the gDNA data with full-length isoform characterization allows to build a more comprehensive view of the underlying biological disease mechanisms in Alzheimer’s disease. Using the novel PCR-free CRISPR-Cas9 enrichment method we screened several genes including the hexanucleotide repeat expansion C9ORF72 that is associated with 40% of familiar ALS cases. This method excludes any PCR bias or errors from an otherwise hard to amplify region as well as preserves the basemodication in a single molecule fashion which allows you to capture mosaicism present in the sample.


June 1, 2021  |  

Detecting pathogenic structural variants with low-coverage PacBio sequencing.

Though a role for structural variants in human disease has long been recognized, it has remained difficult to identify intermediate-sized variants (50 bp to 5 kb), which are too small to detect with array comparative genomic hybridization, but too large to reliably discover with short-read DNA sequencing. Recent studies have demonstrated that PacBio Single Molecule, Real-Time (SMRT) sequencing fills this technology gap. SMRT sequencing detects tens of thousands of structural variants in the human genome, approximately five times the sensitivity of short-read DNA sequencing.


June 1, 2021  |  

Structural variant detection with low-coverage PacBio sequencing

Structural variants (genomic differences =50 base pairs) contribute to the evolution of organisms traits and human disease. Most structural variants (SVs) are too small to detect with array comparative genomic hybridization but too large to reliably discover with short-read DNA sequencing. Recent studies in human genomes show that PacBio SMRT Sequencing sensitively detects structural variants.


June 1, 2021  |  

Targeted sequencing using a long-read sequencing technology

Targeted sequencing employing PCR amplification is a fundamental approach to studying human genetic disease. PacBio’s Sequel System and supporting products provide an end-to-end solution for amplicon sequencing, offering better performance to Sanger technology in accuracy, read length, throughput, and breadth of informative data. Sample multiplexing is supported with three barcoding options providing the flexibility to incorporate unique sample identifiers during target amplification or library preparation. Multiplexing is key to realizing the full capacity of the 1 million individual reactions per Sequel SMRT Cell. Two analysis workflows that can generate high-accuracy results support a wide range of amplicon sizes in two ranges from 250 bp to 3 kb and from 3 kb to >10 kb. The Circular Consensus Sequencing workflow results in high accuracy through intra-molecular consensus generation, while high accuracy for the Long Amplicon Analysis workflow is achieved by clustering of individual long reads from multiple reactions. Here we present workflows and results for single- molecule sequencing of amplicons for human genetic analysis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.