Menu
July 19, 2019  |  

Methylome analysis of two Xanthomonas spp. using Single-Molecule Real-Time Sequencing.

Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified N(6)-methyladenine (6mA) and N(4)-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.


July 19, 2019  |  

Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.

In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


July 19, 2019  |  

Characterization of hepatitis C virus (HCV) envelope diversification from acute to chronic infection within a sexually transmitted HCV cluster by using single-molecule, real-time sequencing.

In contrast to other available next-generation sequencing platforms, PacBio single-molecule, real-time (SMRT) sequencing has the advantage of generating long reads albeit with a relatively higher error rate in unprocessed data. Using this platform, we longitudinally sampled and sequenced the hepatitis C virus (HCV) envelope genome region (1,680 nucleotides [nt]) from individuals belonging to a cluster of sexually transmitted cases. All five subjects were coinfected with HIV-1 and a closely related strain of HCV genotype 4d. In total, 50 samples were analyzed by using SMRT sequencing. By using 7 passes of circular consensus sequencing, the error rate was reduced to 0.37%, and the median number of sequences was 612 per sample. A further reduction of insertions was achieved by alignment against a sample-specific reference sequence. However, in vitro recombination during PCR amplification could not be excluded. Phylogenetic analysis supported close relationships among HCV sequences from the four male subjects and subsequent transmission from one subject to his female partner. Transmission was characterized by a strong genetic bottleneck. Viral genetic diversity was low during acute infection and increased upon progression to chronicity but subsequently fluctuated during chronic infection, caused by the alternate detection of distinct coexisting lineages. SMRT sequencing combines long reads with sufficient depth for many phylogenetic analyses and can therefore provide insights into within-host HCV evolutionary dynamics without the need for haplotype reconstruction using statistical algorithms.IMPORTANCE Next-generation sequencing has revolutionized the study of genetically variable RNA virus populations, but for phylogenetic and evolutionary analyses, longer sequences than those generated by most available platforms, while minimizing the intrinsic error rate, are desired. Here, we demonstrate for the first time that PacBio SMRT sequencing technology can be used to generate full-length HCV envelope sequences at the single-molecule level, providing a data set with large sequencing depth for the characterization of intrahost viral dynamics. The selection of consensus reads derived from at least 7 full circular consensus sequencing rounds significantly reduced the intrinsic high error rate of this method. We used this method to genetically characterize a unique transmission cluster of sexually transmitted HCV infections, providing insight into the distinct evolutionary pathways in each patient over time and identifying the transmission-associated genetic bottleneck as well as fluctuations in viral genetic diversity over time, accompanied by dynamic shifts in viral subpopulations. Copyright © 2017 American Society for Microbiology.


July 19, 2019  |  

Comparative genomics reveals the diversity of restriction-modification systems and DNA methylation sites in Listeria monocytogenes.

Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate’s epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism.Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation. Copyright © 2017 American Society for Microbiology.


July 19, 2019  |  

Single-molecule sequencing (PacBio) of the Staphylococcus capitis NRCS-A clone reveals the basis of multidrug resistance and adaptation to the Neonatal Intensive Care Unit environment.

The multi-resistant Staphylococcus capitis clone NRCS-A has recently been described as a major pathogen causing nosocomial, late-onset sepsis (LOS) in preterm neonates worldwide. NRCS-A representatives exhibit an atypical antibiotic resistance profile. Here, the complete closed genome (chromosomal and plasmid sequences) of NRCS-A prototype strain CR01 and the draft genomes of three other clinical NRCS-A strains from Australia, Belgium and the United Kingdom are annotated and compared to available non-NRCS-A S. capitis genomes. Our goal was to delineate the uniqueness of the NRCS-A clone with respect to antibiotic resistance, virulence factors and mobile genetic elements. We identified 6 antimicrobial resistance genes, all carried by mobile genetic elements. Previously described virulence genes present in the NRCS-A genomes are shared with the six non-NRCS-A S. capitis genomes. Overall, 63 genes are specific to the NRCS-A lineage, including 28 genes located in the methicillin-resistance cassette SCCmec. Among the 35 remaining genes, 25 are of unknown function, and 9 correspond to an additional type I restriction modification system (n = 3), a cytosine methylation operon (n = 2), and a cluster of genes related to the biosynthesis of teichoic acids (n = 4). Interestingly, a tenth gene corresponds to a resistance determinant for nisin (nsr gene), a bacteriocin secreted by potential NRCS-A strain niche competitors in the gut microbiota. The genomic characteristics presented here emphasize the contribution of mobile genetic elements to the emergence of multidrug resistance in the S. capitis NRCS-A clone. No NRCS-A-specific known virulence determinant was detected, which does not support a role for virulence as a driving force of NRCS-A emergence in NICUs worldwide. However, the presence of a nisin resistance determinant on the NRCS-A chromosome, but not in other S. capitis strains and most coagulase-negative representatives, might confer a competitive advantage to NRCS-A strains during the early steps of gut colonization in neonates. This suggests that the striking adaptation of NRCS-A to the NICU environment might be related to its specific antimicrobial resistance and also to a possible enhanced ability to challenge competing bacteria in its ecological niche.


July 19, 2019  |  

DNA target recognition domains in the Type I restriction and modification systems of Staphylococcus aureus.

Staphylococcus aureus displays a clonal population structure in which horizontal gene transfer between different lineages is extremely rare. This is due, in part, to the presence of a Type I DNA restriction–modification (RM) system given the generic name of Sau1, which maintains different patterns of methylation on specific target sequences on the genomes of different lineages. We have determined the target sequences recognized by the Sau1 Type I RM systems present in a wide range of the most prevalent S. aureus lineages and assigned the sequences recognized to particular target recognition domains within the RM enzymes. We used a range of biochemical assays on purified enzymes and single molecule real-time sequencing on genomic DNA to determine these target sequences and their patterns of methylation. Knowledge of the main target sequences for Sau1 will facilitate the synthesis of new vectors for transformation of the most prevalent lineages of this ‘untransformable’ bacterium.


July 19, 2019  |  

Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology.

The mammalian Major Histocompatibility Complex (MHC) region contains several gene families characterized by highly polymorphic loci with extensive nucleotide diversity, copy number variation of paralogous genes, and long repetitive sequences. This structural complexity has made it difficult to construct a reliable reference sequence of the horse MHC region. In this study, we used long-read single molecule, real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence eight Bacterial Artificial Chromosome (BAC) clones spanning the horse MHC class II region. The final assembly resulted in a 1,165,328?bp continuous gap free sequence with 35 manually curated genomic loci of which 23 were considered to be functional and 12 to be pseudogenes. In comparison to the MHC class II region in other mammals, the corresponding region in horse shows extraordinary copy number variation and different relative location and directionality of the Eqca-DRB, -DQA, -DQB and -DOB loci. This is the first long-read sequence assembly of the horse MHC class II region with rigorous manual gene annotation, and it will serve as an important resource for association studies of immune-mediated equine diseases and for evolutionary analysis of genetic diversity in this region.


July 19, 2019  |  

Evolution of multi-drug resistant HCV clones from pre-existing resistant-associated variants during direct-acting antiviral therapy determined by third-generation sequencing.

Resistance-associated variant (RAV) is one of the most significant clinical challenges in treating HCV-infected patients with direct-acting antivirals (DAAs). We investigated the viral dynamics in patients receiving DAAs using third-generation sequencing technology. Among 283 patients with genotype-1b HCV receiving daclatasvir?+?asunaprevir (DCV/ASV), 32 (11.3%) failed to achieve sustained virological response (SVR). Conventional ultra-deep sequencing of HCV genome was performed in 104 patients (32 non-SVR, 72 SVR), and detected representative RAVs in all non-SVR patients at baseline, including Y93H in 28 (87.5%). Long contiguous sequences spanning NS3 to NS5A regions of each viral clone in 12 sera from 6 representative non-SVR patients were determined by third-generation sequencing, and showed the concurrent presence of several synonymous mutations linked to resistance-associated substitutions in a subpopulation of pre-existing RAVs and dominant isolates at treatment failure. Phylogenetic analyses revealed close genetic distances between pre-existing RAVs and dominant RAVs at treatment failure. In addition, multiple drug-resistant mutations developed on pre-existing RAVs after DCV/ASV in all non-SVR cases. In conclusion, multi-drug resistant viral clones at treatment failure certainly originated from a subpopulation of pre-existing RAVs in HCV-infected patients. Those RAVs were selected for and became dominant with the acquisition of multiple resistance-associated substitutions under DAA treatment pressure.


July 19, 2019  |  

Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster.

Highly repetitive satellite DNA (satDNA) repeats are found in most eukaryotic genomes. SatDNAs are rapidly evolving and have roles in genome stability and chromosome segregation. Their repetitive nature poses a challenge for genome assembly and makes progress on the detailed study of satDNA structure difficult. Here, we use single-molecule sequencing long reads from Pacific Biosciences (PacBio) to determine the detailed structure of all major autosomal complex satDNA loci in Drosophila melanogaster, with a particular focus on the 260-bp and Responder satellites. We determine the optimal de novo assembly methods and parameter combinations required to produce a high-quality assembly of these previously unassembled satDNA loci and validate this assembly using molecular and computational approaches. We determined that the computationally intensive PBcR-BLASR assembly pipeline yielded better assemblies than the faster and more efficient pipelines based on the MHAP hashing algorithm, and it is essential to validate assemblies of repetitive loci. The assemblies reveal that satDNA repeats are organized into large arrays interrupted by transposable elements. The repeats in the center of the array tend to be homogenized in sequence, suggesting that gene conversion and unequal crossovers lead to repeat homogenization through concerted evolution, although the degree of unequal crossing over may differ among complex satellite loci. We find evidence for higher-order structure within satDNA arrays that suggest recent structural rearrangements. These assemblies provide a platform for the evolutionary and functional genomics of satDNAs in pericentric heterochromatin. © 2017 Khost et al.; Published by Cold Spring Harbor Laboratory Press.


July 19, 2019  |  

Widespread adenine N6-methylation of active genes in fungi.

N6-methyldeoxyadenine (6mA) is a noncanonical DNA base modification present at low levels in plant and animal genomes, but its prevalence and association with genome function in other eukaryotic lineages remains poorly understood. Here we report that abundant 6mA is associated with transcriptionally active genes in early-diverging fungal lineages. Using single-molecule long-read sequencing of 16 diverse fungal genomes, we observed that up to 2.8% of all adenines were methylated in early-diverging fungi, far exceeding levels observed in other eukaryotes and more derived fungi. 6mA occurred symmetrically at ApT dinucleotides and was concentrated in dense methylated adenine clusters surrounding the transcriptional start sites of expressed genes; its distribution was inversely correlated with that of 5-methylcytosine. Our results show a striking contrast in the genomic distributions of 6mA and 5-methylcytosine and reinforce a distinct role for 6mA as a gene-expression-associated epigenomic mark in eukaryotes.


July 19, 2019  |  

Quasispecies composition and evolution of a typical Zika virus clinical isolate from Suriname.

The arthropod-borne Zika virus (ZIKV) is currently causing a major international public health threat in the Americas. This study describes the isolation of ZIKV from the plasma of a 29-year-old female traveler that developed typical symptoms, like rash, fever and headache upon return from Suriname. The complete genome sequence including the 5′ and 3′ untranslated regions was determined and phylogenetic analysis showed the isolate clustering within the Asian lineage, close to other viruses that have recently been isolated in the Americas. In addition, the viral quasispecies composition was analyzed by single molecule real time sequencing, which suggested a mutation frequency of 1.4?×?10(-4) for this ZIKV isolate. Continued passaging of the virus in cell culture led to the selection of variants with mutations in NS1 and the E protein. The latter might influence virus binding to cell surface heparan sulfate.


July 19, 2019  |  

Improved maize reference genome with single-molecule technologies.

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


July 19, 2019  |  

Quality control of the traditional patent medicine Yimu Wan based on SMRT Sequencing and DNA barcoding.

Substandard traditional patent medicines may lead to global safety-related issues. Protecting consumers from the health risks associated with the integrity and authenticity of herbal preparations is of great concern. Of particular concern is quality control for traditional patent medicines. Here, we establish an effective approach for verifying the biological composition of traditional patent medicines based on single-molecule real-time (SMRT) sequencing and DNA barcoding. Yimu Wan (YMW), a classical herbal prescription recorded in the Chinese Pharmacopoeia, was chosen to test the method. Two reference YMW samples were used to establish a standard method for analysis, which was then applied to three different batches of commercial YMW samples. A total of 3703 and 4810 circular-consensus sequencing (CCS) reads from two reference and three commercial YMW samples were mapped to the ITS2 and psbA-trnH regions, respectively. Moreover, comparison of intraspecific genetic distances based on SMRT sequencing data with reference data from Sanger sequencing revealed an ITS2 and psbA-trnH intergenic spacer that exhibited high intraspecific divergence, with the sites of variation showing significant differences within species. Using the CCS strategy for SMRT sequencing analysis was adequate to guarantee the accuracy of identification. This study demonstrates the application of SMRT sequencing to detect the biological ingredients of herbal preparations. SMRT sequencing provides an affordable way to monitor the legality and safety of traditional patent medicines.


July 19, 2019  |  

Comparative analysis of extended-spectrum-ß-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States.

We sequenced the genomes of ten Salmonella enterica serovar Infantis containing blaCTX-M-65 isolated from chicken, cattle, and human sources collected between 2012 and 2015 in the United States through routine NARMS surveillance and product sampling programs. We also completely assembled the plasmids from four of the isolates. All isolates had a D87Y mutation in the gyrA gene and harbored between 7 and 10 resistance genes (aph (4)-Ia, aac (3)-IVa, aph(3′ )-Ic, blaCTX-M-65, fosA3, floR, dfrA14, sul1, tetA, aadA1) located in two distinct sites of a megaplasmid (~316-323kb) similar to that described in a blaCTX-M-65-positive S. Infantis isolated from a patient in Italy. High-quality single nucleotide polymorphism (hqSNP) analysis revealed that all U.S. isolates were closely related, separated by only 1 to 38 pairwise high quality SNPs, indicating a high likelihood that strains from humans, chicken, and cattle recently evolved from a common ancestor. The U.S. isolates were genetically similar to the blaCTX-M-65-positive S. Infantis isolate from Italy, with a separation of 34 to 47 SNPs. This is the first report of the blaCTX-M-65 gene and the pESI-like megaplasmid from S. Infantis in the United States, and illustrates the importance of applying a global One Health, human and animal perspective to combat antimicrobial resistance. Copyright © 2017 American Society for Microbiology.


July 19, 2019  |  

Iterative optimization of xylose catabolism in Saccharomyces cerevisiae using combinatorial expression tuning.

A common challenge in metabolic engineering is rapidly identifying rate-controlling enzymes in heterologous pathways for subsequent production improvement. We demonstrate a workflow to address this challenge and apply it to improving xylose utilization in Saccharomyces cerevisiae. For eight reactions required for conversion of xylose to ethanol, we screened enzymes for functional expression in S. cerevisiae, followed by a combinatorial expression analysis to achieve pathway flux balancing and identification of limiting enzymatic activities. In the next round of strain engineering, we increased the copy number of these limiting enzymes and again tested the eight-enzyme combinatorial expression library in this new background. This workflow yielded a strain that has a ~70% increase in biomass yield and ~240% increase in xylose utilization. Finally, we chromosomally integrated the expression library. This library enriched for strains with multiple integrations of the pathway, which likely were the result of tandem integrations mediated by promoter homology. Biotechnol. Bioeng. 2017;114: 1301-1309. © 2017 Wiley Periodicals, Inc.© 2017 Wiley Periodicals, Inc.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.