Menu
September 22, 2019

KIR3DL01 upregulation on gut natural killer cells in response to SIV infection of KIR- and MHC class I-defined rhesus macaques.

Natural killer cells provide an important early defense against viral pathogens and are regulated in part by interactions between highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their MHC class I ligands on target cells. We previously identified MHC class I ligands for two rhesus macaque KIRs: KIR3DL01 recognizes Mamu-Bw4 molecules and KIR3DL05 recognizes Mamu-A1*002. To determine how these interactions influence NK cell responses, we infected KIR3DL01+ and KIR3DL05+ macaques with and without defined ligands for these receptors with SIVmac239, and monitored NK cell responses in peripheral blood and lymphoid tissues. NK cell responses in blood were broadly stimulated, as indicated by rapid increases in the CD16+ population during acute infection and sustained increases in the CD16+ and CD16-CD56- populations during chronic infection. Markers of proliferation (Ki-67), activation (CD69 & HLA-DR) and antiviral activity (CD107a & TNFa) were also widely expressed, but began to diverge during chronic infection, as reflected by sustained CD107a and TNFa upregulation by KIR3DL01+, but not by KIR3DL05+ NK cells. Significant increases in the frequency of KIR3DL01+ (but not KIR3DL05+) NK cells were also observed in tissues, particularly in the gut-associated lymphoid tissues, where this receptor was preferentially upregulated on CD56+ and CD16-CD56- subsets. These results reveal broad NK cell activation and dynamic changes in the phenotypic properties of NK cells in response to SIV infection, including the enrichment of KIR3DL01+ NK cells in tissues that support high levels of virus replication.


September 22, 2019

Mutational landscape of antibody variable domains reveals a switch modulating the interdomain conformational dynamics and antigen binding.

Somatic mutations within the antibody variable domains are critical to the immense capacity of the immune repertoire. Here, via a deep mutational scan, we dissect how mutations at all positions of the variable domains of a high-affinity anti-VEGF antibody G6.31 impact its antigen-binding function. The resulting mutational landscape demonstrates that large portions of antibody variable domain positions are open to mutation, and that beneficial mutations can be found throughout the variable domains. We determine the role of one antigen-distal light chain position 83, demonstrating that mutation at this site optimizes both antigen affinity and thermostability by modulating the interdomain conformational dynamics of the antigen-binding fragment. Furthermore, by analyzing a large number of human antibody sequences and structures, we demonstrate that somatic mutations occur frequently at position 83, with corresponding domain conformations observed for G6.31. Therefore, the modulation of interdomain dynamics represents an important mechanism during antibody maturation in vivo.


September 22, 2019

Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.


September 22, 2019

The genomic and functional landscapes of developmental plasticity in the American cockroach.

Many cockroach species have adapted to urban environments, and some have been serious pests of public health in the tropics and subtropics. Here, we present the 3.38-Gb genome and a consensus gene set of the American cockroach, Periplaneta americana. We report insights from both genomic and functional investigations into the underlying basis of its adaptation to urban environments and developmental plasticity. In comparison with other insects, expansions of gene families in P. americana exist for most core gene families likely associated with environmental adaptation, such as chemoreception and detoxification. Multiple pathways regulating metamorphic development are well conserved, and RNAi experiments inform on key roles of 20-hydroxyecdysone, juvenile hormone, insulin, and decapentaplegic signals in regulating plasticity. Our analyses reveal a high level of sequence identity in genes between the American cockroach and two termite species, advancing it as a valuable model to study the evolutionary relationships between cockroaches and termites.


September 22, 2019

Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken.

The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues.Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development.Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species.


September 22, 2019

Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL.

The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lymphoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3 competes with mutant JAK3 (M511I) for binding to the common ? chain and thereby suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its limited oncogenic potential through the acquisition of an additional mutation in the mutant JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased potential to transform primary mouse pro-T cells to interleukin-7-independent growth and were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3 mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the accumulation of additional JAK3 mutations.© 2018 by The American Society of Hematology.


September 22, 2019

Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment.

Streptomyces are a genus of Actinobacteria capable of producing structurally diverse natural products. Here we report the isolation and characterization of a biosynthetically talented Streptomyces (Streptomyces sp. SD85) from tropical mangrove sediments. Whole-genome sequencing revealed that Streptomyces sp. SD85 harbors at least 52 biosynthetic gene clusters (BGCs), which constitute 21.2% of the 8.6-Mb genome. When cultivated under lab conditions, Streptomyces sp. SD85 produces sceliphrolactam, a 26-membered polyene macrolactam with unknown biosynthetic origin. Genome mining yielded a putative sceliphrolactam BGC (sce) that encodes a type I modular polyketide synthase (PKS) system, several ß-amino acid starter biosynthetic enzymes, transporters, and transcriptional regulators. Using the CRISPR/Cas9-based gene knockout method, we demonstrated that the sce BGC is essential for sceliphrolactam biosynthesis. Unexpectedly, the PKS system encoded by sce is short of one module required for assembling the 26-membered macrolactam skeleton according to the collinearity rule. With experimental data disfavoring the involvement of a trans-PKS module, the biosynthesis of sceliphrolactam seems to be best rationalized by invoking a mechanism whereby the PKS system employs an iterative module to catalyze two successive chain extensions with different outcomes. The potential violation of the collinearity rule makes the mechanism distinct from those of other polyene macrolactams.


September 22, 2019

Predicting an HLA-DPB1 expression marker based on standard DPB1 genotyping: Linkage analysis of over 32,000 samples.

The risk of acute graft-versus-host disease (GvHD) after hematopoietic stem cell transplantation is increased with donor-recipient HLA-DPB1 allele mismatching. The single-nucleotide polymorphism (SNP) rs9277534 within the 3′ untranslated region (UTR) correlates with HLA-DPB1 allotype expression and serves as a marker for permissive HLA-DPB1 mismatches. Since rs9277534 is not routinely typed, we analyzed 32,681 samples of mostly European ancestry to investigate if the rs9277534 allele can be reliably imputed from standard DPB1 genotyping. We confirmed the previously-defined linkages between rs9277534 and 18 DPB1 alleles and established additional linkages for 46 DPB1 alleles. Based on these linkages, the rs9277534 allele could be predicted for 99.6% of the samples based on DPB1 genotypes (99.99% concordance). We demonstrate that 100% prediction accuracy could be achieved if the prediction utilized exon 3 sequence information. DPB1 genotyping based on exon 2 data alone allows no unambiguous rs9277534 allele prediction but was estimated to maintain 99% accuracy for samples of European descent. We conclude that DPB1 genotyping is sufficient to infer the DPB1 expression marker rs9277534 with high accuracy. This information could be used to select donors with permissive HLA-DPB1 mismatches without directly screening for rs9277534. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.


September 22, 2019

Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host.

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


September 22, 2019

The draft genome assembly of Dermatophagoides pteronyssinus supports identification of novel allergen isoforms in Dermatophagoides species.

Background: Dermatophagoides pteronyssinus (DP) and Dermatophagoides farinae (DF) are highly similar disease-asso- ciated mites with frequently overlapping geographic distributions. A draft genome of DP was assembled to identify the candidate allergens in DP that are homologous to those in DF, investigate allergen isoforms, and facilitate comparisons with related Acari. Methods: PacBio and Illumina whole-genome sequencing was performed on DP. Assembly and reconstruction of the genomes were optimized for isoform identification in a heterogeneous population. Bioinformatic analyses of Acari genomes were performed. Results: The predicted size of the DP nuclear genome is 52.5 Mb. A predicted set of 19,368 proteins was identified, including all 19 currently recognized allergens from this species. Orthologs for 12 allergens established for DF were found. The population of DP mites showed a high level of heterozygosity that allowed the identification of 43 new isoforms for both established and candidate allergens in DP including a new isoform for the major allergen Der p 23. Reanalyzing the previous DF data assuming heterozygosity, 14 new allergen isoforms could be identified. Some new isoforms were observed in both species, suggesting that these isoforms predated speciation. The high quality of both genomes allowed an examination of synteny which showed that many allergen orthologs are physically clustered but with species-specific exon/intron structures. Comparative genomic analyses of other Acariformes mites showed that most of the allergen homologs are widely conserved within this Superorder. Conclusions: Candidate allergens in DP were identified to facilitate future serological studies. While DP and DF are highly similar genetically, species-specific allergen isoforms exist to facilitate molecular differentiation.


September 22, 2019

The sea lamprey germline genome provides insights into programmed genome rearrangement and vertebrate evolution.

The sea lamprey (Petromyzon marinus) serves as a comparative model for reconstructing vertebrate evolution. To enable more informed analyses, we developed a new assembly of the lamprey germline genome that integrates several complementary data sets. Analysis of this highly contiguous (chromosome-scale) assembly shows that both chromosomal and whole-genome duplications have played significant roles in the evolution of ancestral vertebrate and lamprey genomes, including chromosomes that carry the six lamprey HOX clusters. The assembly also contains several hundred genes that are reproducibly eliminated from somatic cells during early development in lamprey. Comparative analyses show that gnathostome (mouse) homologs of these genes are frequently marked by polycomb repressive complexes (PRCs) in embryonic stem cells, suggesting overlaps in the regulatory logic of somatic DNA elimination and bivalent states that are regulated by early embryonic PRCs. This new assembly will enhance diverse studies that are informed by lampreys’ unique biology and evolutionary/comparative perspective.


September 22, 2019

Blood CXCR3+CD4 T cells are enriched in inducible replication competent HIV in aviremic antiretroviral therapy-treated individuals.

We recently demonstrated that lymph nodes (LNs) PD-1+/T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1+CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1+CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals.


September 22, 2019

Predominant gut Lactobacillus murinus strain mediates anti-inflammaging effects in calorie-restricted mice.

Calorie restriction (CR), which has a potent anti-inflammaging effect, has been demonstrated to induce dramatic changes in the gut microbiota. Whether the modulated gut microbiota contributes to the attenuation of inflammation during CR is unknown, as are the members of the microbial community that may be key mediators of this process.Here, we report that a unique Lactobacillus-predominated microbial community was rapidly attained in mice within 2 weeks of CR, which decreased the levels of circulating microbial antigens and systemic inflammatory markers such as tumour necrosis factor alpha (TNF-a). Lactobacillus murinus CR147, an isolate in the most abundant operational taxonomic unit (OTU) enriched by CR, downregulated interleukin-8 production in TNF-a-stimulated Caco-2 cells and significantly increased the lifespan and the brood size of the nematode Caenorhabditis elegans. In gnotobiotic mice colonized with the gut microbiota from old mice, this strain decreased their intestinal permeability and serum endotoxin load, consequently attenuating the inflammation induced by the old microbiota.Our study demonstrated that a strain of Lactobacillus murinus was promoted in CR mice and causatively contributed to the attenuation of ageing-associated inflammation.


September 22, 2019

Insights into the evolution of host association through the isolation and characterization of a novel human periodontal pathobiont, Desulfobulbus oralis.

The human oral microbiota encompasses representatives of many bacterial lineages that have not yet been cultured. Here we describe the isolation and characterization of previously uncultured Desulfobulbus oralis, the first human-associated representative of its genus. As mammalian-associated microbes rarely have free-living close relatives, D. oralis provides opportunities to study how bacteria adapt and evolve within a host. This sulfate-reducing deltaproteobacterium has adapted to the human oral subgingival niche by curtailing its physiological repertoire, losing some biosynthetic abilities and metabolic independence, and by dramatically reducing environmental sensing and signaling capabilities. The genes that enable free-living Desulfobulbus to synthesize the potent neurotoxin methylmercury were also lost by D. oralis, a notably positive outcome of host association. However, horizontal gene acquisitions from other members of the microbiota provided novel mechanisms of interaction with the human host, including toxins like leukotoxin and hemolysins. Proteomic and transcriptomic analysis revealed that most of those factors are actively expressed, including in the subgingival environment, and some are secreted. Similar to other known oral pathobionts, D. oralis can trigger a proinflammatory response in oral epithelial cells, suggesting a direct role in the development of periodontal disease.IMPORTANCE Animal-associated microbiota likely assembled as a result of numerous independent colonization events by free-living microbes followed by coevolution with their host and other microbes. Through specific adaptation to various body sites and physiological niches, microbes have a wide range of contributions, from beneficial to disease causing. Desulfobulbus oralis provides insights into genomic and physiological transformations associated with transition from an open environment to a host-dependent lifestyle and the emergence of pathogenicity. Through a multifaceted mechanism triggering a proinflammatory response, D. oralis is a novel periodontal pathobiont. Even though culture-independent approaches can provide insights into the potential role of the human microbiome “dark matter,” cultivation and experimental characterization remain important to studying the roles of individual organisms in health and disease.


September 22, 2019

Dynamic evolution of a-gliadin prolamin gene family in homeologous genomes of hexaploid wheat.

Wheat Gli-2 loci encode complex groups of a-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of a-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous a-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 a-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of a-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of a-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of a-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.