Menu
September 22, 2019  |  

De novo assembly, delivery and expression of a 101 kb human gene in mouse cells

Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger, mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here we describe a pipeline for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kb. The DNA assembly step is supported by an integrated robotic workcell. We assemble the 101 kb human HPRT1 gene in yeast, deliver it to mouse cells, and show expression of the human protein from its full-length gene. This pipeline provides a framework for producing systematic, designer variants of any mammalian gene locus for functional evaluation in cells.


September 22, 2019  |  

Forward genetics by genome sequencing uncovers the central role of the Aspergillus niger goxB locus in hydrogen peroxide induced glucose oxidase expression.

Aspergillus niger is an industrially important source for gluconic acid and glucose oxidase (GOx), a secreted commercially important flavoprotein which catalyses the oxidation of ß-D-glucose by molecular oxygen to D-glucolactone and hydrogen peroxide. Expression of goxC, the GOx encoding gene and the concomitant two step conversion of glucose to gluconic acid requires oxygen and the presence of significant amounts of glucose in the medium and is optimally induced at pH 5.5. The molecular mechanisms underlying regulation of goxC expression are, however, still enigmatic. Genetic studies aimed at understanding GOx induction have indicated the involvement of at least seven complementation groups, for none of which the molecular basis has been resolved. In this study, a mapping-by-sequencing forward genetics approach was used to uncover the molecular role of the goxB locus in goxC expression. Using the Illumina and PacBio sequencing platforms a hybrid high quality draft genome assembly of laboratory strain N402 was obtained and used as a reference for mapping of genomic reads obtained from the derivative NW103:goxB mutant strain. The goxB locus encodes a thioredoxin reductase. A deletion of the encoding gene in the N402 parent strain led to a high constitutive expression level of the GOx and the lactonase encoding genes required for the two-step conversion of glucose in gluconic acid and of the catR gene encoding catalase R. This high constitutive level of expression was observed to be irrespective of the carbon source and oxidative stress applied. A model clarifying the role of GoxB in the regulation of the expression of goxC involving hydrogen peroxide as second messenger is presented.


September 22, 2019  |  

2,3-Butanediol production by the non-pathogenic bacterium Paenibacillus brasilensis.

2,3-Butanediol (2,3-BDO) is of considerable importance in the chemical, plastic, pharmaceutical, cosmetic, and food industries. The main bacterial species producing this compound are considered pathogenic, hindering large-scale productivity. The species Paenibacillus brasilensis is generally recognized as safe (GRAS) and is phylogenetically similar to P. polymyxa, a species widely used for 2,3-BDO production. Here, we demonstrate, for the first time, that P. brasilensis strains produce 2,3-BDO. Total 2,3-BDO concentrations for 15 P. brasilensis strains varied from 5.5 to 7.6 g/l after 8 h incubation at 32 °C in modified YEPD medium containing 20 g/l glucose. Strain PB24 produced 8.2 g/l of 2,3-BDO within a 12-h growth period, representing a yield of 0.43 g/g and a productivity of 0.68 g/l/h. An increase in 2,3-BDO production by strain PB24 was observed using higher concentrations of glucose, reaching 27 g/l of total 2,3-BDO in YEPD containing about 80 g/l glucose within a 72-h growth period. We sequenced the genome of P. brasilensis PB24 and uncovered at least six genes related to the 2,3-BDO pathway at four distinct loci. We also compared gene sequences related to the 2,3-BDO pathway in P. brasilensis PB24 with those of other spore-forming bacteria, and found strong similarity to P. polymyxa, P. terrae, and P. peoriae 2,3-BDO-related genes. Regulatory regions upstream of these genes indicated that they are probably co-regulated. Finally, we propose a production pathway from glucose to 2,3-BDO in P. brasilensis PB24. Although the gene encoding S-2,3-butanediol dehydrogenase (butA) was found in the genome of P. brasilensis PB24, only R,R-2,3- and meso-2,3-butanediol were detected by gas chromatography under the growth conditions tested here. Our findings can serve as a basis for further improvements to the metabolic capabilities of this little-studied Paenibacillus species in relation to production of the high-value chemical 2,3-butanediol.


September 22, 2019  |  

The opium poppy genome and morphinan production.

Morphinan-based painkillers are derived from opium poppy (Papaver somniferum L.). We report a draft of the opium poppy genome, with 2.72 gigabases assembled into 11 chromosomes with contig N50 and scaffold N50 of 1.77 and 204 megabases, respectively. Synteny analysis suggests a whole-genome duplication at ~7.8 million years ago and ancient segmental or whole-genome duplication(s) that occurred before the Papaveraceae-Ranunculaceae divergence 110 million years ago. Syntenic blocks representative of phthalideisoquinoline and morphinan components of a benzylisoquinoline alkaloid cluster of 15 genes provide insight into how this cluster evolved. Paralog analysis identified P450 and oxidoreductase genes that combined to form the STORR gene fusion essential for morphinan biosynthesis in opium poppy. Thus, gene duplication, rearrangement, and fusion events have led to evolution of specialized metabolic products in opium poppy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


September 22, 2019  |  

The Butanol Producing Microbe Clostridium beijerinckii NCIMB 14988 Manipulated Using Forward and Reverse Genetic Tools.

The solventogenic anaerobe Clostridium beijerinckii has potential for use in the sustainable bioconversion of plant-derived carbohydrates into solvents, such as butanol or acetone. However, relatively few strains have been extensively characterised either at the genomic level or through exemplification of a complete genetic toolkit. To remedy this situation, a new strain of C. beijerinckii, NCIMB 14988, is selected from among a total of 55 new clostridial isolates capable of growth on hexose and pentose sugars. Chosen on the basis of its favorable properties, the complete genome sequence of NCIMB 14988 is determined and a high-efficiency plasmid transformation protocol devised. The developed DNA transfer procedure allowed demonstration in NCIMB 14988 of the forward and reverse genetic techniques of transposon mutagenesis and gene knockout, respectively. The latter is accomplished through the successful deployment of both group II intron retargeting (ClosTron) and allelic exchange. In addition to gene inactivation, the developed allelic exchange procedure is used to create point mutations in the chromosome, allowing for the effect of amino acid changes in enzymes involved in primary metabolism to be characterized. ClosTron mediated disruption of the currently unannotated non-coding region between genes LF65_05915 and LF65_05920 is found to result in a non-sporulating phenotype.© 2018 The Authors. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.


September 22, 2019  |  

Comprehensive profiling of four base overhang ligation fidelity by T4 DNA Ligase and application to DNA assembly.

Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined by the ligation of Watson-Crick base-paired overhangs. However, ligation of mismatched overhangs leads to erroneous assembly, and low-efficiency Watson Crick pairings can lead to truncated assemblies. Using sets of empirically vetted, high-accuracy junction pairs avoids this issue but limits the number of parts that can be joined in a single reaction. Here, we report the use of comprehensive end-joining ligation fidelity and bias data to predict high accuracy junction sets for Golden Gate assembly. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions and enabled accurate and efficient assembly of a lac cassette from up to 24-fragments in a single reaction.


September 22, 2019  |  

Cryptocurrencies and Zero Mode Wave guides: An unclouded path to a more contiguous Cannabis sativa L. genome assembly

We describe the use ofa Decentralized Autonomous Organization (DAO) to crypto- fund the single molecule sequencing and publication ofa Type ll Cannabis plant. This resulted in the construction of the most contiguous Cannabis genome assembly to date. The combined use of the Dash cryptocurrency, DAOs, and Pacific Biosciences sequencing delivered a 1.03 Gb genome with a N50 of 665Kb in 77 days from funding to public upload. This represents a 230 fold improvement in the contiguity of the first cannabis assemblies in 2011 and a 4 fold improvement over all cannabis assemblies to date. 34Gb ofadditional sequencing pushed the assembly to a N50 of 3.8Mb. Hi-C data from Phase Genomics further scaffolded the assembly to 35 contigs at an N50 of 74Mb but requires additional curation. The genome is partially phased and larger than previously reported (2N : 1.33Gb). The CBCA, THCA and CBDA synthase gene clusters have been phased onto respective contigs demonstrating tandem repeat expansions.


September 22, 2019  |  

Functionality of two origins of replication in Vibrio cholerae strains with a single chromosome.

Chromosomal inheritance in bacteria usually entails bidirectional replication of a single chromosome from a single origin into two copies and subsequent partitioning of one copy each into daughter cells upon cell division. However, the human pathogen Vibrio cholerae and other Vibrionaceae harbor two chromosomes, a large Chr1 and a small Chr2. Chr1 and Chr2 have different origins, an oriC-type origin and a P1 plasmid-type origin, respectively, driving the replication of respective chromosomes. Recently, we described naturally occurring exceptions to the two-chromosome rule of Vibrionaceae: i.e., Chr1 and Chr2 fused single chromosome V. cholerae strains, NSCV1 and NSCV2, in which both origins of replication are present. Using NSCV1 and NSCV2, here we tested whether two types of origins of replication can function simultaneously on the same chromosome or one or the other origin is silenced. We found that in NSCV1, both origins are active whereas in NSCV2 ori2 is silenced despite the fact that it is functional in an isolated context. The ori2 activity appears to be primarily determined by the copy number of the triggering site, crtS, which in turn is determined by its location with respect to ori1 and ori2 on the fused chromosome.


September 22, 2019  |  

Complete genome sequence of Leuconostoc citreum EFEL2700, a host strain for transformation of pCB vectors.

Leuconostoc citreum is an important lactic acid bacterium used as a starter culture for producing kimchi, the traditional Korean fermented vegetables. An efficient host strain for plasmid transformation, L. citreum EFEL2700, was isolated from kimchi, and it has been frequently used for genetic engineering of L. citreum. In this study, we report the whole genome sequence of the strain and its genetic characteristics. Genome assembly yielded 5 contigs (1 chromosome and 4 plasmids), and the complete genome contained 1,923,830 base pairs (bp) with a G?+?C content of 39.0%. Average nucleotide identity analysis showed high homology (= 99%) to the reference strain L. citreum KM 20. The smallest plasmid (4.3 kbp) was used as an Escherichia coli shuttle vector (pCB) for heterologous gene expression, and L. citreum EFEL2700 showed the highest transformation efficiency, 6.7?×?104 CFU µg-1 DNA. Genetic analysis of the genome enabled the construction of primary metabolic pathway showing a typical hetero-type lactic acid fermentation. Notably, no core genes for primary metabolism were observed in plasmid 4 and it could be eliminated to create an efficient host for gene transformation. This report will facilitate the understanding and application of L. citreum EFEL2700 as a food-grade microbial cell factory.Copyright © 2018. Published by Elsevier B.V.


September 22, 2019  |  

Genome-scale analysis of Acetobacterium bakii reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation.

Acetogens synthesize acetyl-CoA via CO2 or CO fixation, producing organic compounds. Despite their ecological and industrial importance, their transcriptional and post-transcriptional regulation has not been systematically studied. With completion of the genome sequence of Acetobacterium bakii (4.28-Mb), we measured changes in the transcriptome of this psychrotolerant acetogen in response to temperature variations under autotrophic and heterotrophic growth conditions. Unexpectedly, acetogenesis genes were highly up-regulated at low temperatures under heterotrophic, as well as autotrophic, growth conditions. To mechanistically understand the transcriptional regulation of acetogenesis genes via changes in RNA secondary structures of 5′-untranslated regions (5′-UTR), the primary transcriptome was experimentally determined, and 1379 transcription start sites (TSS) and 1100 5′-UTR were found. Interestingly, acetogenesis genes contained longer 5′-UTR with lower RNA-folding free energy than other genes, revealing that the 5′-UTRs control the RNA abundance of the acetogenesis genes under low temperature conditions. Our findings suggest that post-transcriptional regulation via RNA conformational changes of 5′-UTRs is necessary for cold-adaptive acetogenesis.© 2018 Shin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.


September 22, 2019  |  

Regulation of yeast-to-hyphae transition in Yarrowia lipolytica.

The yeast Yarrowia lipolytica undergoes a morphological transition from yeast-to-hyphal growth in response to environmental conditions. A forward genetic screen was used to identify mutants that reliably remain in the yeast phase, which were then assessed by whole-genome sequencing. All the smooth mutants identified, so named because of their colony morphology, exhibit independent loss of DNA at a repetitive locus made up of interspersed ribosomal DNA and short 10- to 40-mer telomere-like repeats. The loss of repetitive DNA is associated with downregulation of genes with stress response elements (5′-CCCCT-3′) and upregulation of genes with cell cycle box (5′-ACGCG-3′) motifs in their promoter region. The stress response element is bound by the transcription factor Msn2p in Saccharomyces cerevisiae We confirmed that the Y. lipolyticamsn2 (Ylmsn2) ortholog is required for hyphal growth and found that overexpression of Ylmsn2 enables hyphal growth in smooth strains. The cell cycle box is bound by the Mbp1p/Swi6p complex in S. cerevisiae to regulate G1-to-S phase progression. We found that overexpression of either the Ylmbp1 or Ylswi6 homologs decreased hyphal growth and that deletion of either Ylmbp1 or Ylswi6 promotes hyphal growth in smooth strains. A second forward genetic screen for reversion to hyphal growth was performed with the smooth-33 mutant to identify additional genetic factors regulating hyphal growth in Y. lipolytica Thirteen of the mutants sequenced from this screen had coding mutations in five kinases, including the histidine kinases Ylchk1 and Ylnik1 and kinases of the high-osmolarity glycerol response (HOG) mitogen-activated protein (MAP) kinase cascade Ylssk2, Ylpbs2, and Ylhog1 Together, these results demonstrate that Y. lipolytica transitions to hyphal growth in response to stress through multiple signaling pathways.IMPORTANCE Many yeasts undergo a morphological transition from yeast-to-hyphal growth in response to environmental conditions. We used forward and reverse genetic techniques to identify genes regulating this transition in Yarrowia lipolytica We confirmed that the transcription factor Ylmsn2 is required for the transition to hyphal growth and found that signaling by the histidine kinases Ylchk1 and Ylnik1 as well as the MAP kinases of the HOG pathway (Ylssk2, Ylpbs2, and Ylhog1) regulates the transition to hyphal growth. These results suggest that Y. lipolytica transitions to hyphal growth in response to stress through multiple kinase pathways. Intriguingly, we found that a repetitive portion of the genome containing telomere-like and rDNA repeats may be involved in the transition to hyphal growth, suggesting a link between this region and the general stress response. Copyright © 2018 Pomraning et al.


September 21, 2019  |  

Toward complete bacterial genome sequencing through the combined use of multiple next-generation sequencing platforms.

PacBio’s long-read sequencing technologies can be successfully used for a complete bacterial genome assembly using recently developed non-hybrid assemblers in the absence of secondgeneration, high-quality short reads. However, standardized procedures that take into account multiple pre-existing second-generation sequencing platforms are scarce. In addition to Illumina HiSeq and Ion Torrent PGM-based genome sequencing results derived from previous studies, we generated further sequencing data, including from the PacBio RS II platform, and applied various bioinformatics tools to obtain complete genome assemblies for five bacterial strains. Our approach revealed that the hierarchical genome assembly process (HGAP) non-hybrid assembler resulted in nearly complete assemblies at a moderate coverage of ~75x, but that different versions produced non-compatible results requiring post processing. The other two platforms further improved the PacBio assembly through scaffolding and a final error correction.


September 21, 2019  |  

Characterization of multi-drug resistant Enterococcus faecalis isolated from cephalic recording chambers in research macaques (Macaca spp.).

Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6′)-aph(2″), aph(3′)-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.