Menu
July 7, 2019

Complete genomes of the marine flavobacterium Nonlabens strains YIK11 and MIC269

Here, we report the complete genome sequences of two strains, which were isolated from sediment samples collected in Korea and Micronesia, and both were classified as members of Nonlabens spp. The complete genome sequence of Nonlabens sp. strain YIK11 consists of 3,260,677bp in two contigs while the one from strain MIC269 consists of 2,884,293bp in one contig, without plasmid. The genomes of YIK11 and MIC269 contain three and two genes encoding rhodopsins of different types, respectively.


July 7, 2019

Genome sequencing to develop Paenibacillus donghaensis strain JH8T (KCTC 13049T=LMG 23780T) as a microbial fertilizer and correlation to its plant growth-promoting phenotype

Paenibacillus donghaensis JH8T (KCTC 13049T=LMG 23780T) is a Gram-positive, mesophilic, endospore-forming bacterium isolated from East Sea sediment at depth of 500m in Korea. The strain exhibited plant cell wall hydrolytic and plant growth promoting abilities. The complete genome of P. donghaensis strain JH8T contains 7602 protein-coding sequences and an average GC content of 49.7% in its chromosome (8.54Mbp). Genes encoding proteins related to the degradation of plant cell wall, nitrogen-fixation, phosphate solubilization, and synthesis of siderophore were existed in the P. donghaensis strain JH8T genome, indicating that this strain can be used as an eco-friendly microbial agent for increasing agricultural productivity.


July 7, 2019

Complete genome sequence of Granulosicoccus antarcticus type strain IMCC3135T, a marine gammaproteobacterium with a putative dimethylsulfoniopropionate demethylase gene

Granulosicoccus, the only genus of the family Granulosicoccaceae, occupies a distinct phylogenetic position within the order Chromatiales of the Gammaproteobacteria. The genus has been found in various marine regions, especially associated with diverse marine macroalgae. No genomes have been reported for the genus Granulosicoccus thus far, hampering studies on physiology and lifestyles of this genus. Here we report the complete genome sequence of strain IMCC3135T, the type strain of Granulosicoccus antarcticus isolated from Antarctic coastal seawater. The genome was 7.78Mbp long and harbored many genes involved in sulfur metabolism. In particular, a gene for dimethylsulfoniopropionate (DMSP) demethylase was found in the genome, rendering strain IMCC3135T one of the few marine gammaproteobacteria equipped with the potential for DMSP demethylation.


July 7, 2019

Complete genome sequence of the halophile bacterium Kushneria marisflavi KCCM 80003T, isolated from seawater in Korea

We present the genome sequence of Kushneria marisflavi KCCM 80003T isolated from Yellow Sea in Korea. The complete genome of KCCM 80003T consisted of a single, circular chromosome of 3,667,185bp, with an average G+C content of 59.05%, and 3287 coding sequences, 12 rRNAs, and 66 tRNAs. Kushneria marisflavi KCCM 80003T, belonging to the family Halomonadaceae, exhibited resistance to high salt concentrations and possessed potassium metabolism- or osmotic stress-related coding sequences, including potassium homeostasis, ectoine biosynthesis and regulation, choline and betaine uptake, and betaine biosynthesis features in the genome. These results provide a basis for understanding resistance strategies to osmotic stress at the genetic level and accordingly have implications for genetic engineering and biotechnology.


July 7, 2019

Complete genome sequence of Tsukamurella sp. MH1: A wide-chain length alkane-degrading actinomycete.

Tsukamurella sp. strain MH1, capable to use a wide range of n-alkanes as the only carbon source, was isolated from petroleum-contaminated soil (Pite?ti, Romania) and its complete genome was sequenced. The 4,922,396?bp genome contains only one circular chromosome with a G?+?C content of 71.12%, much higher than the type strains of this genus (68.4%). Based on the 16S rRNA genes sequence similarity, strain MH1 was taxonomically identified as Tsukamurella carboxydivorans. Genome analyses revealed that strain MH1 is harboring only one gene encoding for the alkB-like hydroxylase, arranged in a complete alkane monooxygenase operon. This is the first complete genome of the specie T. carboxydivorans, which will provide insights into the potential of Tsukamurella sp. MH1 and related strains for bioremediation of petroleum hydrocarbons-contaminated sites and into the environmental role of these bacteria. Copyright © 2017. Published by Elsevier B.V.


July 7, 2019

Complete genome sequence of the marine Rhodococcus sp. H-CA8f isolated from Comau fjord in Northern Patagonia, Chile

Rhodococcus sp. H-CA8f was isolated from marine sediments obtained from the Comau fjord, located in Northern Chilean Patagonia. Whole-genome sequencing was achieved using PacBio RS II platform, comprising one closed, complete chromosome of 6,19?Mbp with a 62.45% G?+?C content. The chromosome harbours several metabolic pathways providing a wide catabolic potential, where the upper biphenyl route is described. Also, Rhodococcus sp. H-CA8f bears one linear mega-plasmid of 301?Kbp and 62.34% of G?+?C content, where genomic analyses demonstrated that it is constituted mostly by putative ORFs with unknown functions, representing a novel genetic feature. These genetic characteristics provide relevant insights regarding Chilean marine actinobacterial strains.


July 7, 2019

Complete genome sequence of the sesame pathogen Ralstonia solanacearum strain SEPPX 05.

Ralstonia solanacearum is a soil-borne phytopathogen associated with bacterial wilt disease of sesame. R. solanacearum is the predominant agent causing damping-off from tropical to temperate regions. Because bacterial wilt has decreased the sesame industry yield, we sequenced the SEPPX05 genome using PacBio and Illumina HiSeq 2500 systems and revealed that R. solanacearum strain SEPPX05 carries a bipartite genome consisting of a 3,930,849 bp chromosome and a 2,066,085 bp megaplasmid with 66.84% G+C content that harbors 5,427 coding sequences. Based on the whole genome, phylogenetic analysis showed that strain SEPPX05 is grouped with two phylotype I strains (EP1 and GMI1000). Pan-genomic analysis shows that R. solanacearum is a complex species with high biological diversity and was able to colonize various environments during evolution. Despite deletions, insertions, and inversions, most genes of strain SEPPX05 have relatively high levels of synteny compared with strain GMI1000. We identified 104 genes involved in virulence-related factors in the SEPPX05 genome and eight absent genes encoding T3Es of GMI1000. Comparing SEPPX05 with other species, we found highly conserved secretion systems central to modulating interactions of host bacteria. These data may provide important clues for understanding underlying pathogenic mechanisms of R. solanacearum and help in the control of sesame bacterial wilt.


July 7, 2019

Host genetic variation strongly influences the microbiome structure and function in fungal fruiting-bodies.

Despite increasing knowledge on host-associated microbiomes, little is known about mechanisms underlying fungus-microbiome interactions. This study aimed to examine the relative importance of host genetic, geographic and environmental variations in structuring fungus-associated microbiomes. We analyzed the taxonomic composition and function of microbiomes inhabiting fungal fruiting-bodies in relation to host genetic variation, soil pH and geographic distance between samples. For this, we sequenced the metagenomes of 40 fruiting-bodies collected from six fairy rings (i.e., genets) of a saprotrophic fungus Marasmius oreades. Our analyses revealed that fine genetic variations between host fungi could strongly affect their associated microbiome, explaining, respectively, 25% and 37% of the variation in microbiome structure and function, whereas geographic distance and soil pH remained of secondary importance. These results, together with the smaller genome size of fungi compared to other eukaryotes, suggest that fruiting-bodies are suitable for further genome-centric studies on host-microbiome interactions.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019

Draft genome assembly of the sheep scab mite, Psoroptes ovis.

Sheep scab, caused by infestation with Psoroptes ovis, is highly contagious, results in intense pruritus, and represents a major welfare and economic concern. Here, we report the first draft genome assembly and gene prediction of P. ovis based on PacBio de novo sequencing. The ~63.2-Mb genome encodes 12,041 protein-coding genes. Copyright © 2018 Burgess et al.


July 7, 2019

Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm.

Ganoderma boninense is the dominant fungal pathogen of basal stem rot (BSR) disease on Elaeis guineensis We sequenced the nuclear genome of mycelia using both Illumina and Pacific Biosciences platforms for assembly of scaffolds. The draft genome comprised 79.24?Mb, 495 scaffolds, and 26,226 predicted coding sequences. Copyright © 2018 Utomo et al.


July 7, 2019

Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01.

A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum. The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.


July 7, 2019

A fast approximate algorithm for mapping long reads to large reference databases.

Emerging single-molecule sequencing technologies from Pacific Biosciences and Oxford Nanopore have revived interest in long-read mapping algorithms. Alignment-based seed-and-extend methods demonstrate good accuracy, but face limited scalability, while faster alignment-free methods typically trade decreased precision for efficiency. In this article, we combine a fast approximate read mapping algorithm based on minimizers with a novel MinHash identity estimation technique to achieve both scalability and precision. In contrast to prior methods, we develop a mathematical framework that defines the types of mapping targets we uncover, establish probabilistic estimates of p-value and sensitivity, and demonstrate tolerance for alignment error rates up to 20%. With this framework, our algorithm automatically adapts to different minimum length and identity requirements and provides both positional and identity estimates for each mapping reported. For mapping human PacBio reads to the hg38 reference, our method is 290?×?faster than Burrows-Wheeler Aligner-MEM with a lower memory footprint and recall rate of 96%. We further demonstrate the scalability of our method by mapping noisy PacBio reads (each =5?kbp in length) to the complete NCBI RefSeq database containing 838 Gbp of sequence and >60,000 genomes.


July 7, 2019

PlasmidTron: assembling the cause of phenotypes and genotypes from NGS data.

Increasingly rich metadata are now being linked to samples that have been whole-genome sequenced. However, much of this information is ignored. This is because linking this metadata to genes, or regions of the genome, usually relies on knowing the gene sequence(s) responsible for the particular trait being measured and looking for its presence or absence in that genome. Examples of this would be the spread of antimicrobial resistance genes carried on mobile genetic elements (MGEs). However, although it is possible to routinely identify the resistance gene, identifying the unknown MGE upon which it is carried can be much more difficult if the starting point is short-read whole-genome sequence data. The reason for this is that MGEs are often full of repeats and so assemble poorly, leading to fragmented consensus sequences. Since mobile DNA, which can carry many clinically and ecologically important genes, has a different evolutionary history from the host, its distribution across the host population will, by definition, be independent of the host phylogeny. It is possible to use this phenomenon in a genome-wide association study to identify both the genes associated with the specific trait and also the DNA linked to that gene, for example the flanking sequence of the plasmid vector on which it is encoded, which follows the same patterns of distribution as the marker gene/sequence itself. We present PlasmidTron, which utilizes the phenotypic data normally available in bacterial population studies, such as antibiograms, virulence factors, or geographical information, to identify traits that are likely to be present on DNA that can randomly reassort across defined bacterial populations. It is also possible to use this methodology to associate unknown genes/sequences (e.g. plasmid backbones) with a specific molecular signature or marker (e.g. resistance gene presence or absence) using PlasmidTron. PlasmidTron uses a k-mer-based approach to identify reads associated with a phylogenetically unlinked phenotype. These reads are then assembled de novo to produce contigs in a fast and scalable-to-large manner. PlasmidTron is written in Python 3 and is available under the open source licence GNU GPL3 from https://github.com/sanger-pathogens/plasmidtron.


July 7, 2019

Complete genome sequence of Microcystis aeruginosa NIES-2481 and common genomic features of group G M. aeruginosa.

Microcystis aeruginosa is a freshwater bloom-forming cyanobacterium that is distributed worldwide. M. aeruginosa can be divided into at least 8 phylogenetic groups (A-G and X) at the intraspecific level. Here, we report the complete genome sequence of M. aeruginosa NIES-2481, which was isolated from Lake Kasumigaura, Japan, and is assigned to group G. The complete genome sequence of M. aeruginosa NIES-2481 comprises a 4.29-Mbp circular chromosome and a 147,539-bp plasmid; the circular chromosome and the plasmid contain 4,332 and 167 protein-coding genes, respectively. Comparative analysis with the complete genome of M. aeruginosa NIES-2549, which belongs to the same group with NIES-2481, showed that the genome size is the smallest level in previously sequenced M. aeruginosa strains, and the genomes do not contain a microcystin biosynthetic gene cluster in common. Synteny analysis revealed only small-scale rearrangements between the two genomes.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.