Menu
July 7, 2019

Epigenetic mechanisms in microbial members of the human microbiota: current knowledge and perspectives.

The human microbiota and epigenetic processes have both been shown to play a crucial role in health and disease. However, there is extremely scarce information on epigenetic modulation of microbiota members except for a few pathogens. Mainly DNA adenine methylation has been described extensively in modulating the virulence of pathogenic bacteria in particular. It would thus appear likely that such mechanisms are widespread for most bacterial members of the microbiota. This review will present briefly the current knowledge on epigenetic processes in bacteria, give examples of known methylation processes in microbial members of the human microbiota and summarize the knowledge on regulation of host epigenetic processes by the human microbiota.


July 7, 2019

Genomic sequencing-based mutational enrichment analysis identifies motility genes in a genetically intractable gut microbe.

A major roadblock to understanding how microbes in the gastrointestinal tract colonize and influence the physiology of their hosts is our inability to genetically manipulate new bacterial species and experimentally assess the function of their genes. We describe the application of population-based genomic sequencing after chemical mutagenesis to map bacterial genes responsible for motility in Exiguobacterium acetylicum, a representative intestinal Firmicutes bacterium that is intractable to molecular genetic manipulation. We derived strong associations between mutations in 57 E. acetylicum genes and impaired motility. Surprisingly, less than half of these genes were annotated as motility-related based on sequence homologies. We confirmed the genetic link between individual mutations and loss of motility for several of these genes by performing a large-scale analysis of spontaneous suppressor mutations. In the process, we reannotated genes belonging to a broad family of diguanylate cyclases and phosphodiesterases to highlight their specific role in motility and assigned functions to uncharacterized genes. Furthermore, we generated isogenic strains that allowed us to establish that Exiguobacterium motility is important for the colonization of its vertebrate host. These results indicate that genetic dissection of a complex trait, functional annotation of new genes, and the generation of mutant strains to define the role of genes in complex environments can be accomplished in bacteria without the development of species-specific molecular genetic tools.


July 7, 2019

Serinibacter

The genus Serinibacter belongs, based on the phylogenetic analysis of the nearly full-length 16S rRNA gene, to the Beutenbergiaceae together with the genera Beutenbergia, Salana, and Miniimonas. The two species of the genus Serinibacter shared 99.6% 16S rRNA gene sequence similarity but low DNA DNA relatedness. Cells are irregular rods, Gram-stain positive, not acid-fast. Endospores are not formed. Nonmotile. Aerobic to anaerobic. Oxidase-negative, catalase-positive. The peptidoglycan type is A4a with an l-Ser residue at position 1 of the peptide subunit. The acyl type is acetyl. The major cell-wall sugar is galactose. The predominant menaquinone is MK-8(H4). The major polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, and unidentified phospholipids. Phosphatidylethanolamine is absent. The cellular fatty acid profile is dominated by the occurrence of iso- and anteiso-branched-chain acids. Mycolic acids are absent. The genomic G+C content is 70.7 to 72.8 mol%.


July 7, 2019

Origins of the current seventh cholera pandemic.

Vibrio cholerae has caused seven cholera pandemics since 1817, imposing terror on much of the world, but bacterial strains are currently only available for the sixth and seventh pandemics. The El Tor biotype seventh pandemic began in 1961 in Indonesia, but did not originate directly from the classical biotype sixth-pandemic strain. Previous studies focused mainly on the spread of the seventh pandemic after 1970. Here, we analyze in unprecedented detail the origin, evolution, and transition to pandemicity of the seventh-pandemic strain. We used high-resolution comparative genomic analysis of strains collected from 1930 to 1964, covering the evolution from the first available El Tor biotype strain to the start of the seventh pandemic. We define six stages leading to the pandemic strain and reveal all key events. The seventh pandemic originated from a nonpathogenic strain in the Middle East, first observed in 1897. It subsequently underwent explosive diversification, including the spawning of the pandemic lineage. This rapid diversification suggests that, when first observed, the strain had only recently arrived in the Middle East, possibly from the Asian homeland of cholera. The lineage migrated to Makassar, Indonesia, where it gained the important virulence-associated elements Vibrio seventh pandemic island I (VSP-I), VSP-II, and El Tor type cholera toxin prophage by 1954, and it then became pandemic in 1961 after only 12 additional mutations. Our data indicate that specific niches in the Middle East and Makassar were important in generating the pandemic strain by providing gene sources and the driving forces for genetic events.


July 7, 2019

Genomic insights into a sustained national outbreak of Yersinia pseudotuberculosis.

In 2014, a sustained outbreak of yersiniosis due to Yersinia pseudotuberculosis occurred across all major cities in New Zealand (NZ), with a total of 220 laboratory-confirmed cases, representing one of the largest ever reported outbreaks of Y. pseudotuberculosis. Here, we performed whole genome sequencing of outbreak-associated isolates to produce the largest population analysis to date of Y. pseudotuberculosis, giving us unprecedented capacity to understand the emergence and evolution of the outbreak clone. Multivariate analysis incorporating our genomic and clinical epidemiological data strongly suggested a single point-source contamination of the food chain, with subsequent nationwide distribution of contaminated produce. We additionally uncovered significant diversity in key determinants of virulence, which we speculate may help explain the high morbidity linked to this outbreak.


July 7, 2019

Systems biology-guided biodesign of consolidated lignin conversion

Lignin is the second most abundant biopolymer on the earth, yet its utilization for fungible products is complicated by its recalcitrant nature and remains a major challenge for sustainable lignocellulosic biorefineries. In this study, we used a systems biology approach to reveal the carbon utilization pattern and lignin degradation mechanisms in a unique lignin-utilizing Pseudomonas putida strain (A514). The mechanistic study further guided the design of three functional modules to enable a consolidated lignin bioconversion route. First, P. putida A514 mobilized a dye peroxidase-based enzymatic system for lignin depolymerization. This system could be enhanced by overexpressing a secreted multifunctional dye peroxidase to promote a two-fold enhancement of cell growth on insoluble kraft lignin. Second, A514 employed a variety of peripheral and central catabolism pathways to metabolize aromatic compounds, which can be optimized by overexpressing key enzymes. Third, the ß-oxidation of fatty acid was up-regulated, whereas fatty acid synthesis was down-regulated when A514 was grown on lignin and vanillic acid. Therefore, the functional module for polyhydroxyalkanoate (PHA) production was designed to rechannel ß-oxidation products. As a result, PHA content reached 73% per cell dry weight (CDW). Further integrating the three functional modules enhanced the production of PHA from kraft lignin and biorefinery waste. Thus, this study elucidated lignin conversion mechanisms in bacteria with potential industrial implications and laid out the concept for engineering a consolidated lignin conversion route.


July 7, 2019

svclassify: a method to establish benchmark structural variant calls.

The human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files from many high-throughput sequencing technologies, and then builds a one-class model using these annotations to classify candidate SVs as likely true or false positives.We first used pedigree analysis to develop a set of high-confidence breakpoint-resolved large deletions. We then used svclassify to cluster and classify these deletions as well as a set of high-confidence deletions from the 1000 Genomes Project and a set of breakpoint-resolved complex insertions from Spiral Genetics. We find that likely SVs cluster separately from likely non-SVs based on our annotations, and that the SVs cluster into different types of deletions. We then developed a supervised one-class classification method that uses a training set of random non-SV regions to determine whether candidate SVs have abnormal annotations different from most of the genome. To test this classification method, we use our pedigree-based breakpoint-resolved SVs, SVs validated by the 1000 Genomes Project, and assembly-based breakpoint-resolved insertions, along with semi-automated visualization using svviz.We find that candidate SVs with high scores from multiple technologies have high concordance with PCR validation and an orthogonal consensus method MetaSV (99.7 % concordant), and candidate SVs with low scores are questionable. We distribute a set of 2676 high-confidence deletions and 68 high-confidence insertions with high svclassify scores from these call sets for benchmarking SV callers. We expect these methods to be particularly useful for establishing high-confidence SV calls for benchmark samples that have been characterized by multiple technologies.


July 7, 2019

Complete genome sequence of Brevibacterium linens BS258, a potential marine Actinobacterium for environmental remediation via microbially induced calcite precipitation

Brevibacterium linens BS258 is a urease positive actinobacterium isolated from marine sediment of China Yellow Sea, which demonstrated to have strong capability of calcite precipitation and bioremediation of heavy metal pollution. Here, we report the complete genome sequence of this strain, which might provide a lot of valuable information for environmental remediation, wastewater treatment and atmospheric CO2 sequestration.


July 7, 2019

Susan Celniker: Foundational resources to study a dynamic genome.

The Genetics Society of America’s George W. Beadle Award honors individuals who have made outstanding contributions to the community of genetics researchers and who exemplify the qualities of its namesake. The 2016 recipient, Susan E. Celniker, played a key role in the sequencing, annotation, and characterization of the Drosophila genome. She participated in early sequencing efforts at the Lawrence Berkeley National Laboratory and led the modENCODE Fly Transcriptome Consortium. Her efforts were critical to ensuring that the Drosophila genome was well-annotated, making it one of the best curated animal genomes available. As the Principal Investigator for the BDGP, Celniker has enabled the study of proteomes by creating a collection of over 13,000 clones that match annotated genes for protein expression in cells or transgenic flies, and she has established the most comprehensive spatial gene expression atlas in any organism, with in situ imaging of more than 80% of the Drosophila protein-coding transcriptome through embryogenesis. In addition to providing the research community with these invaluable resources and reagents, she continues to develop new tools and datasets for genetics researchers to explore the spatial and temporal control of gene expression.


July 7, 2019

Microbial metagenomics mock scenario-based sample simulation (M3S3).

Shotgun sequencing in increasingly applied in clinical microbiology for unbiased culture-independent diagnosis. While software solutions for metagenomics proliferate, integration of metagenomics in clinical care, requires method standardisation and validation. Virtual metagenomics samples could underpin validation by substituting real samples and thus we sought to develop a novel solution for simulation of metagenomics samples based on user-defined clinical scenarios.We designed the Microbial Metagenomics Mock Scenario-based Sample Simulation (M3S3) workflow, which allows users to generate virtual samples from raw reads or assemblies. The M3S3 output is a mock sample in FASTQ or FASTA format. M3S3 was tested by generating virtual samples for ten challenging infectious disease scenarios, involving a background matrix ‘spiked’ in silico with pathogens including mixtures. Replicate samples (seven per scenario) were used to represent different compositional ratios. Virtual samples were analysed using Taxonomer and Kraken db.The ten challenge scenarios were successfully applied, generating 80 samples. For all tested scenarios, the virtual samples showed sequence compositions as predicted from the user input. Spiked pathogen sequences were identified with the majority of the replicates and most exhibited acceptable abundance (deviation between expected and observed abundance of spiked pathogens), with slight differences observed between software tools.Despite demonstrated proof-of-concept, integration of clinical metagenomics in routine microbiology remains a substantial challenge. M3S3 is capable of producing virtual samples on-demand, simulating a spectrum of clinical diagnostic scenarios of varying complexity. The M3S3 tool can therefore support the development and validation of standardised metagenomics applications. Copyright © 2017. Published by Elsevier Ltd.


July 7, 2019

Collection and storage of HLA NGS genotyping data for the 17th International HLA and Immunogenetics Workshop.

For over 50?years, the International HLA and Immunogenetics Workshops (IHIW) have advanced the fields of histocompatibility and immunogenetics (H&I) via community sharing of technology, experience and reagents, and the establishment of ongoing collaborative projects. Held in the fall of 2017, the 17th IHIW focused on the application of next generation sequencing (NGS) technologies for clinical and research goals in the H&I fields. NGS technologies have the potential to allow dramatic insights and advances in these fields, but the scope and sheer quantity of data associated with NGS raise challenges for their analysis, collection, exchange and storage. The 17th IHIW adopted a centralized approach to these issues, and we developed the tools, services and systems to create an effective system for capturing and managing these NGS data. We worked with NGS platform and software developers to define a set of distinct but equivalent NGS typing reports that record NGS data in a uniform fashion. The 17th IHIW database applied our standards, tools and services to collect, validate and store those structured, multi-platform data in an automated fashion. We have created community resources to enable exploration of the vast store of curated sequence and allele-name data in the IPD-IMGT/HLA Database, with the goal of creating a long-term community resource that integrates these curated data with new NGS sequence and polymorphism data, for advanced analyses and applications. Copyright © 2017 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.


July 7, 2019

Microbial sequence typing in the genomic era.

Next-generation sequencing (NGS), also known as high-throughput sequencing, is changing the field of microbial genomics research. NGS allows for a more comprehensive analysis of the diversity, structure and composition of microbial genes and genomes compared to the traditional automated Sanger capillary sequencing at a lower cost. NGS strategies have expanded the versatility of standard and widely used typing approaches based on nucleotide variation in several hundred DNA sequences and a few gene fragments (MLST, MLVA, rMLST and cgMLST). NGS can now accommodate variation in thousands or millions of sequences from selected amplicons to full genomes (WGS, NGMLST and HiMLST). To extract signals from high-dimensional NGS data and make valid statistical inferences, novel analytic and statistical techniques are needed. In this review, we describe standard and new approaches for microbial sequence typing at gene and genome levels and guidelines for subsequent analysis, including methods and computational frameworks. We also present several applications of these approaches to some disciplines, namely genotyping, phylogenetics and molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.


July 7, 2019

Genomic insights into Photobacterium damselae subsp. damselae strain KC-Na-1, isolated from the finless porpoise (Neophocaena asiaeorientalis)

Photobacterium damselae subsp. damselae (PDD) is a marine bacterium that can infect a variety of marine animals and humans. Although this bacterium has been isolated from several stranded dolphins and whales, its pathogenic role in cetaceans is still unclear. In this study, we report the complete genome of PDD strain KC-Na-1 isolated from a finless porpoise (Neophocaena asiaeorientalis) rescued from the South Sea (Republic of Korea). The sequenced genome comprised two chromosomes and four plasmids. Among the recently identified major virulence factors in PDD, only phospholipase (plpV) was found in strain KC-Na-1. Interestingly, two genes homologous to Vibrio thermostable direct hemolysin (tdh) and its transcriptional regulator toxR, which are known virulence factors associated with Vibrio parahaemolyticus, were encoded on the plasmid pPDD-Na-1-3. Based on these results, strain KC-Na-1 may have potential pathogenicity in humans and other marine animals and also could act as a potential virulent strain. To the best of our knowledge, this is the first report of the complete genome sequence of P. damselae.


July 7, 2019

New high copy tandem repeat in the content of the chicken W chromosome.

The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.


July 7, 2019

FDA-CDC antimicrobial resistance isolate bank: A publicly-available resource to support research, development and regulatory requirements.

The FDA-CDC Antimicrobial Resistance Isolate Bank was created in July 2015 as a publicly available resource to combat antimicrobial resistance. It is a curated repository of bacterial isolates with an assortment of clinically-important resistance mechanisms that have been phenotypically and genotypically characterized. In the first two years of operation, the Bank offered 14 panels comprising 496 unique isolates and had filled 486 orders from 394 institutions throughout the United States. New panels are being added. Copyright © 2017 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.