Menu
September 22, 2019

Full-length transcriptome sequences of ephemeral plant Arabidopsis pumila provides insight into gene expression dynamics during continuous salt stress.

Arabidopsis pumila is native to the desert region of northwest China and it is extraordinarily well adapted to the local semi-desert saline soil, thus providing a candidate plant system for environmental adaptation and salt-tolerance gene mining. However, understanding of the salt-adaptation mechanism of this species is limited because of genomic sequences scarcity. In the present study, the transcriptome profiles of A. pumila leaf tissues treated with 250 mM NaCl for 0, 0.5, 3, 6, 12, 24 and 48 h were analyzed using a combination of second-generation sequencing (SGS) and third-generation single-molecule real-time (SMRT) sequencing.Correction of SMRT long reads by SGS short reads resulted in 59,328 transcripts. We found 8075 differentially expressed genes (DEGs) between salt-stressed tissues and controls, of which 483 were transcription factors and 1157 were transport proteins. Most DEGs were activated within 6 h of salt stress and their expression stabilized after 48 h; the number of DEGs was greatest within 12 h of salt stress. Gene annotation and functional analyses revealed that expression of genes associated with the osmotic and ionic phases rapidly and coordinately changed during the continuous salt stress in this species, and salt stress-related categories were highly enriched among these DEGs, including oxidation-reduction, transmembrane transport, transcription factor activity and ion channel activity. Orphan, MYB, HB, bHLH, C3H, PHD, bZIP, ARF and NAC TFs were most enriched in DEGs; ABCB1, CLC-A, CPK30, KEA2, KUP9, NHX1, SOS1, VHA-A and VP1 TPs were extensively up-regulated in salt-stressed samples, suggesting that they play important roles in slat tolerance. Importantly, further experimental studies identified a mitogen-activated protein kinase (MAPK) gene MAPKKK18 as continuously up-regulated throughout salt stress, suggesting its crucial role in salt tolerance. The expression patterns of the salt-responsive 24 genes resulted from quantitative real-time PCR were basically consistent with their transcript abundance changes identified by RNA-Seq.The full-length transcripts generated in this study provide a more accurate depiction of gene transcription of A. pumila. We identified potential genes involved in salt tolerance of A. pumila. These data present a genetic resource and facilitate better understanding of salt-adaptation mechanism for ephemeral plants.


September 22, 2019

Long-term changes of bacterial and viral compositions in the intestine of a recovered Clostridium difficile patient after fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infections (RCDIs). However, long-term effects on the patients’ gut microbiota and the role of viruses remain to be elucidated. Here, we characterized bacterial and viral microbiota in the feces of a cured RCDI patient at various time points until 4.5 yr post-FMT compared with the stool donor. Feces were subjected to DNA sequencing to characterize bacteria and double-stranded DNA (dsDNA) viruses including phages. The patient’s microbial communities varied over time and showed little overall similarity to the donor until 7 mo post-FMT, indicating ongoing gut microbiota adaption in this time period. After 4.5 yr, the patient’s bacteria attained donor-like compositions at phylum, class, and order levels with similar bacterial diversity. Differences in the bacterial communities between donor and patient after 4.5 yr were seen at lower taxonomic levels. C. difficile remained undetectable throughout the entire timespan. This demonstrated sustainable donor feces engraftment and verified long-term therapeutic success of FMT on the molecular level. Full engraftment apparently required longer than previously acknowledged, suggesting the implementation of year-long patient follow-up periods into clinical practice. The identified dsDNA viruses were mainly Caudovirales phages. Unexpectedly, sequences related to giant algae–infecting Chlorella viruses were also detected. Our findings indicate that intestinal viruses may be implicated in the establishment of gut microbiota. Therefore, virome analyses should be included in gut microbiota studies to determine the roles of phages and other viruses—such as Chlorella viruses—in human health and disease, particularly during RCDI.


September 22, 2019

Accurate determination of bacterial abundances in human metagenomes using full-length 16S sequencing reads

DNA sequencing of PCR-amplified marker genes, especially but not limited to the 16S rRNA gene, is perhaps the most common approach for profiling microbial communities. Due to technological constraints of commonly available DNA sequencing, these approaches usually take the form of short reads sequenced from a narrow, targeted variable region, with a corresponding loss of taxonomic resolution relative to the full length marker gene. We use Pacific Biosciences single-molecule, real-time circular consensus sequencing to sequence amplicons spanning the entire length of the 16S rRNA gene. However, this sequencing technology suffers from high sequencing error rate that needs to be addressed in order to take full advantage of the longer sequence. Here, we present a method to model the sequencing error process using a generalized pair hidden Markov chain model and estimate bacterial abundances in microbial samples. We demonstrate, with simulated and real data, that our model and its associated estimation procedure are able to give accurate estimates at the species (or subspecies) level, and is more flexible than existing methods like SImple Non-Bayesian TAXonomy (SINTAX).


September 22, 2019

The state of play in higher eukaryote gene annotation.

A genome sequence is worthless if it cannot be deciphered; therefore, efforts to describe – or ‘annotate’ – genes began as soon as DNA sequences became available. Whereas early work focused on individual protein-coding genes, the modern genomic ocean is a complex maelstrom of alternative splicing, non-coding transcription and pseudogenes. Scientists – from clinicians to evolutionary biologists – need to navigate these waters, and this has led to the design of high-throughput, computationally driven annotation projects. The catalogues that are being produced are key resources for genome exploration, especially as they become integrated with expression, epigenomic and variation data sets. Their creation, however, remains challenging.


September 22, 2019

Targeted combinatorial alternative splicing generates brain region-specific repertoires of neurexins.

Molecular diversity of surface receptors has been hypothesized to provide a mechanism for selective synaptic connectivity. Neurexins are highly diversified receptors that drive the morphological and functional differentiation of synapses. Using a single cDNA sequencing approach, we detected 1,364 unique neurexin-a and 37 neurexin-ß mRNAs produced by alternative splicing of neurexin pre-mRNAs. This molecular diversity results from near-exhaustive combinatorial use of alternative splice insertions in Nrxn1a and Nrxn2a. By contrast, Nrxn3a exhibits several highly stereotyped exon selections that incorporate novel elements for posttranscriptional regulation of a subset of transcripts. Complexity of Nrxn1a repertoires correlates with the cellular complexity of neuronal tissues, and a specific subset of isoforms is enriched in a purified cell type. Our analysis defines the molecular diversity of a critical synaptic receptor and provides evidence that neurexin diversity is linked to cellular diversity in the nervous system. Copyright © 2014 Elsevier Inc. All rights reserved.


September 22, 2019

Full-length transcriptome of Misgurnus anguillicaudatus provides insights into evolution of genus Misgurnus.

Reconstruction and annotation of transcripts, particularly for a species without reference genome, plays a critical role in gene discovery, investigation of genomic signatures, and genome annotation in the pre-genomic era. This study generated 33,330 full-length transcripts of diploid M. anguillicaudatus using PacBio SMRT Sequencing. A total of 6,918 gene families were identified with two or more isoforms, and 26,683 complete ORFs with an average length of 1,497?bp were detected. Totally, 1,208 high-confidence lncRNAs were identified, and most of these appeared to be precursor transcripts of miRNAs or snoRNAs. Phylogenetic tree of the Misgurnus species was inferred based on the 1,905 single copy orthologous genes. The tetraploid and diploid M. anguillicaudatus grouped into a clade, and M. bipartitus showed a closer relationship with the M. anguillicaudatus. The overall evolutionary rates of tetraploid M. anguillicaudatus were significantly higher than those of other Misgurnus species. Meanwhile, 28 positively selected genes were identified in M. anguillicaudatus clade. These positively selected genes may play critical roles in the adaptation to various habitat environments for M. anguillicaudatus. This study could facilitate further exploration of the genomic signatures of M. anguillicaudatus and provide potential insights into unveiling the evolutionary history of tetraploid loach.


September 22, 2019

Application of circular consensus sequencing and network analysis to characterize the bovine IgG repertoire.

Vertebrate immune systems generate diverse repertoires of antibodies capable of mediating response to a variety of antigens. Next generation sequencing methods provide unique approaches to a number of immuno-based research areas including antibody discovery and engineering, disease surveillance, and host immune response to vaccines. In particular, single-molecule circular consensus sequencing permits the sequencing of antibody repertoires at previously unattainable depths of coverage and accuracy. We approached the bovine immunoglobulin G (IgG) repertoire with the objective of characterizing diversity of expressed IgG transcripts. Here we present single-molecule real-time sequencing data of expressed IgG heavy-chain repertoires of four individual cattle. We describe the diversity observed within antigen binding regions and visualize this diversity using a network-based approach.We generated 49,945 high quality cDNA sequences, each spanning the entire IgG variable region from four Bos taurus calves. From these sequences we identified 49,521 antigen binding regions using the automated Paratome web server. Approximately 9% of all unique complementarity determining 2 (CDR2) sequences were of variable lengths. A bimodal distribution of unique CDR3 sequence lengths was observed, with common lengths of 5-6 and 21-25 amino acids. The average number of cysteine residues in CDR3s increased with CDR3 length and we observed that cysteine residues were centrally located in CDR3s. We identified 19 extremely long CDR3 sequences (up to 62 amino acids in length) within IgG transcripts. Network analyses revealed distinct patterns among the expressed IgG antigen binding repertoires of the examined individuals.We utilized circular consensus sequencing technology to provide baseline data of the expressed bovine IgG repertoire that can be used for future studies important to livestock research. Somatic mutation resulting in base insertions and deletions in CDR2 further diversifies the bovine antibody repertoire. In contrast to previous studies, our data indicate that unusually long CDR3 sequences are not unique to IgM antibodies in cattle. Centrally located cysteine residues in bovine CDR3s provide further evidence that disulfide bond formation is likely of structural importance. We hypothesize that network or cluster-based analyses of expressed antibody repertoires from controlled challenge experiments will help identify novel natural antigen binding solutions to specific pathogens of interest.


September 22, 2019

Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing.

Koumiss is considered as a complete dairy product high in nutrients and with medicinal properties. The bacterial communities involved in production of koumiss play a crucial role in the fermentation cycle. To reveal bacterial biodiversity in koumiss and the dynamics of succession in bacterial populations during fermentation, 22 samples were collected from 5 sampling sites and the full length of the 16S ribosomal RNA genes sequenced using single molecule real-time sequencing technology. One hundred forty-eight species were identified from 82 bacterial genera and 8 phyla. These results suggested that the structural difference in the bacterial community could be attributed to geographical location. The most significant difference in bacterial composition occurred in samples from group D compared with other groups. The sampling location of group D was distant from the city and maintained the primitive local nomadic life. The dynamics of succession in bacterial communities showed that Lactobacillus helveticus increased in abundance from 0 to 9h and reached its peak at 9h and then decreased. In contrast, Enterococcus faecalis, Enterococcus durans, and Enterococcus casseliflavus increased gradually throughout the fermentation process, and reached a maximum after 24h. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.


September 22, 2019

Analyses of intestinal microbiota: culture versus sequencing.

Analyzing human as well as animal microbiota composition has gained growing interest because structural components and metabolites of microorganisms fundamentally influence all aspects of host physiology. Originally dominated by culture-dependent methods for exploring these ecosystems, the development of molecular techniques such as high throughput sequencing has dramatically increased our knowledge. Because many studies of the microbiota are based on the bacterial 16S ribosomal RNA (rRNA) gene targets, they can, at least in principle, be compared to determine the role of the microbiome composition for developmental processes, host metabolism, and physiology as well as different diseases. In our review, we will summarize differences and pitfalls in current experimental protocols, including all steps from nucleic acid extraction to bioinformatical analysis which may produce variation that outweighs subtle biological differences. Future developments, such as integration of metabolomic, transcriptomic, and metagenomic data sets and standardization of the procedures, will be discussed. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.


September 22, 2019

Alternative splice variants of AID are not stoichiometrically present at the protein level in chronic lymphocytic leukemia

Activation-induced deaminase (AID) is a DNA-mutating enzyme that mediates class-switch recombination as well as somatic hypermutation of antibody genes in B cells. Due to off-target activity, AID is implicated in lymphoma development by introducing genome-wide DNA damage and initiating chromosomal translocations such as c-myc/IgH. Several alternative splice transcripts of AID have been reported in activated B cells as well as malignant B cells such as chronic lymphocytic leukemia (CLL). As most commercially available antibodies fail to recognize alternative splice variants, their abundance in vivo, and hence their biological significance, has not been determined. In this study, we assessed the protein levels of AID splice isoforms by introducing an AID splice reporter construct into cell lines and primary CLL cells from patients as well as from WT and TCL1(tg) C57BL/6 mice (where TCL1 is T-cell leukemia/lymphoma 1). The splice construct is 5′-fused to a GFP-tag, which is preserved in all splice isoforms and allows detection of translated protein. Summarizing, we show a thorough quantification of alternatively spliced AID transcripts and demonstrate that the corresponding protein abundances, especially those of splice variants AID-ivs3 and AID-?E4, are not stoichiometrically equivalent. Our data suggest that enhanced proteasomal degradation of low-abundance proteins might be causative for this discrepancy. © 2013 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019

Interaction between the microbiome and TP53 in human lung cancer.

Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort.Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas.The results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection.


September 22, 2019

Next generation sequencing data of a defined microbial mock community.

Generating sequence data of a defined community composed of organisms with complete reference genomes is indispensable for the benchmarking of new genome sequence analysis methods, including assembly and binning tools. Moreover the validation of new sequencing library protocols and platforms to assess critical components such as sequencing errors and biases relies on such datasets. We here report the next generation metagenomic sequence data of a defined mock community (Mock Bacteria ARchaea Community; MBARC-26), composed of 23 bacterial and 3 archaeal strains with finished genomes. These strains span 10 phyla and 14 classes, a range of GC contents, genome sizes, repeat content and encompass a diverse abundance profile. Short read Illumina and long-read PacBio SMRT sequences of this mock community are described. These data represent a valuable resource for the scientific community, enabling extensive benchmarking and comparative evaluation of bioinformatics tools without the need to simulate data. As such, these data can aid in improving our current sequence data analysis toolkit and spur interest in the development of new tools.


September 22, 2019

Single-cell mRNA isoform diversity in the mouse brain.

Alternative mRNA isoform usage is an important source of protein diversity in mammalian cells. This phenomenon has been extensively studied in bulk tissues, however, it remains unclear how this diversity is reflected in single cells.Here we use long-read sequencing technology combined with unique molecular identifiers (UMIs) to reveal patterns of alternative full-length isoform expression in single cells from the mouse brain. We found a surprising amount of isoform diversity, even after applying a conservative definition of what constitutes an isoform. Genes tend to have one or a few isoforms highly expressed and a larger number of isoforms expressed at a low level. However, for many genes, nearly every sequenced mRNA molecule was unique, and many events affected coding regions suggesting previously unknown protein diversity in single cells. Exon junctions in coding regions were less prone to splicing errors than those in non-coding regions, indicating purifying selection on splice donor and acceptor efficiency.Our findings indicate that mRNA isoform diversity is an important source of biological variability also in single cells.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.