Menu
September 22, 2019  |  

Bacillus wiedmannii biovar thuringiensis: A specialized mosquitocidal pathogen with plasmids from diverse origins.

Bacillus cereus sensu lato also known as B. cereus group is composed of an ecologically diverse bacterial group with an increasing number of related species, some of which are medically or agriculturally important. Numerous e?orts have been undertaken to allow presumptive di?erentiation of B. cereus group species from one another. FCC41 is a Bacillus sp. strain toxic against mosquito species like Aedes aegypti, Aedes (Ochlerotatus) albifasciatus, Culex pipiens, Culex quinquefasciatus, and Culex apicinus, some of them responsible for the transmission of vector-borne diseases. Here, we report the complete genome sequence of FCC41 strain, which consists of one circular chromosome and eight circular plasmids ranging in size from 8 to 490?kb. This strain harbors six crystal protein genes, including cry24Ca, two cry4-like and two cry52-like, a cry41-like parasporin gene and multiple virulence factors. The phylogenetic analysis of the whole-genome sequence of this strain with molecular approaches places this strain into the Bacillus wiedmannii cluster. However, according with phenotypical characteristics such as the mosquitocidal activity due to the presence of Cry proteins found in the parasporal body and cry genes encoded in plasmids of different sizes, indicate that this strain could be renamed as B. wiedmannii biovar thuringiensis strain FCC41.


September 22, 2019  |  

Type II restriction modification system in Ureaplasma parvum OMC-P162 strain.

Ureaplasma parvum serovar 3 strain, OMC-P162, was isolated from the human placenta of a preterm delivery at 26 weeks’ gestation. In this study, we sequenced the complete genome of OMC-P162 and compared it with other serovar 3 strains isolated from patients with different clinical conditions. Ten unique genes in OMC-P162, five of which encoded for hypothetical proteins, were identified. Of these, genes UPV_229 and UPV_230 formed an operon whose open reading frames were predicted to code for a DNA methyltransferase and a hypothetical protein, respectively. DNA modification analysis of the OMC-P162 genome identified N4-methylcytosine (m4C) and N6-methyladenine (m6A), but not 5-methylocytosine (m5C). UPV230 recombinant protein displayed endonuclease activity and recognized the CATG sequence, resulting in a blunt cut between A and T. This restriction enzyme activity was identical to that of the cultivated OMC-P162 strain, suggesting that this restriction enzyme was naturally expressed in OMC-P162. We designated this enzyme as UpaP162. Treatment of pT7Blue plasmid with recombinant protein UPV229 completely blocked UpaP162 restriction enzyme activity. These results suggest that the UPV_229 and UPV_230 genes act as a type II restriction-modification system in Ureaplasma OMC-P162.


September 22, 2019  |  

Loss of bacitracin resistance due to a large genomic deletion among Bacillus anthracis strains.

Bacillus anthracis is a Gram-positive endospore-forming bacterial species that causes anthrax in both humans and animals. In Zambia, anthrax cases are frequently reported in both livestock and wildlife, with occasional transmission to humans, causing serious public health problems in the country. To understand the genetic diversity of B. anthracis strains in Zambia, we sequenced and compared the genomic DNA of B. anthracis strains isolated across the country. Single nucleotide polymorphisms clustered these strains into three groups. Genome sequence comparisons revealed a large deletion in strains belonging to one of the groups, possibly due to unequal crossing over between a pair of rRNA operons. The deleted genomic region included genes conferring resistance to bacitracin, and the strains with the deletion were confirmed with loss of bacitracin resistance. Similar deletions between rRNA operons were also observed in a few B. anthracis strains phylogenetically distant from Zambian strains. The structure of bacitracin resistance genes flanked by rRNA operons was conserved only in members of the Bacillus cereus group. The diversity and genomic characteristics of B. anthracis strains determined in this study would help in the development of genetic markers and treatment of anthrax in Zambia. IMPORTANCE Anthrax is caused by Bacillus anthracis, an endospore-forming soil bacterium. The genetic diversity of B. anthracis is known to be low compared with that of Bacillus species. In this study, we performed whole-genome sequencing of Zambian isolates of B. anthracis to understand the genetic diversity between closely related strains. Comparison of genomic sequences revealed that closely related strains were separated into three groups based on single nucleotide polymorphisms distributed throughout the genome. A large genomic deletion was detected in the region containing a bacitracin resistance gene cluster flanked by rRNA operons, resulting in the loss of bacitracin resistance. The structure of the deleted region, which was also conserved among species of the Bacillus cereus group, has the potential for both deletion and amplification and thus might be enabling the species to flexibly control the level of bacitracin resistance for adaptive evolution.


September 22, 2019  |  

Characterization and genomic analyses of Pseudomonas aeruginosa podovirus TC6: establishment of genus Pa11virus.

Phages have attracted a renewed interest as alternative to chemical antibiotics. Although the number of phages is 10-fold higher than that of bacteria, the number of genomically characterized phages is far less than that of bacteria. In this study, phage TC6, a novel lytic virus of Pseudomonas aeruginosa, was isolated and characterized. TC6 consists of an icosahedral head with a diameter of approximately 54 nm and a short tail with a length of about 17 nm, which are characteristics of the family Podoviridae. TC6 can lyse 86 out of 233 clinically isolated P. aeruginosa strains, thus showing application potentials for phage therapy. The linear double-stranded genomic DNA of TC6 consisted of 49796 base pairs and was predicted to contain 71 protein-coding genes. A total of 11 TC6 structural proteins were identified by mass spectrometry. Comparative analysis revealed that the P. aeruginosa phages TC6, O4, PA11, and IME180 shared high similarity at DNA sequence and proteome levels, among which PA11 was the first phage discovered and published. Meanwhile, these phages contain 54 core genes and have very close phylogenetic relationships, which distinguish them from other known phage genera. We therefore proposed that these four phages can be classified as Pa11virus, comprising a new phage genus of Podoviridae that infects Pseudomonas spp. The results of this work promoted our understanding of phage biology, classification, and diversity.


September 22, 2019  |  

Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen.

Biological control using bacteriophages is a promising approach for mitigating the devastating effects of coral diseases. Several phages that infect Vibrio coralliilyticus, a widespread coral pathogen, have been isolated, suggesting that this bacterium is permissive to viral infection and is, therefore, a suitable candidate for treatment by phage therapy. In this study, we combined functional and genomic approaches to evaluate the therapeutic potential of BONAISHI, a novel V. coralliilyticus phage, which was isolated from the coral reef in Van Phong Bay (Vietnam). BONAISHI appears to be strictly lytic for several pathogenic strains of V. coralliilyticus and remains infectious over a broad range of environmental conditions. This candidate has an unusually large dsDNA genome (303 kb), with no genes that encode known toxins or implicated in lysogeny control. We identified several proteins involved in host lysis, which may offer an interesting alternative to the use of whole bacteriophages for controlling V. coralliilyticus. A preliminary therapy test showed that adding BONAISHI to an infected culture of Symbiodinium sp. cells reduced the impact of V. coralliilyticus on Symbiodinium sp. photosynthetic activity. This study showed that BONAISHI is able to mitigate V. coralliilyticus infections, making it a good candidate for phage therapy for coral disease.


September 22, 2019  |  

pYR4 from a Norwegian isolate of Yersinia ruckeri is a putative virulence plasmid encoding both a type IV pilus and a type IV secretion system

Enteric redmouth disease caused by the pathogen Yersinia ruckeri is a significant problem for fish farming around the world. Despite its importance, only a few virulence factors of Y. ruckeri have been identified and studied in detail. Here, we report and analyze the complete DNA sequence of pYR4, a plasmid from a highly pathogenic Norwegian Y. ruckeri isolate, sequenced using PacBio SMRT technology. Like the well-known pYV plasmid of human pathogenic Yersiniae, pYR4 is a member of the IncFII family. Thirty-one percent of the pYR4 sequence is unique compared to other Y. ruckeri plasmids. The unique regions contain, among others genes, a large number of mobile genetic elements and two partitioning systems. The G+C content of pYR4 is higher than that of the Y. ruckeri NVH_3758 genome, indicating its relatively recent horizontal acquisition. pYR4, as well as the related plasmid pYR3, comprises operons that encode for type IV pili and for a conjugation system (tra). In contrast to other Yersinia plasmids, pYR4 cannot be cured at elevated temperatures. Our study highlights the power of PacBio sequencing technology for identifying mis-assembled segments of genomic sequences. Comparative analysis of pYR4 and other Y. ruckeri plasmids and genomes, which were sequenced by second and the third generation sequencing technologies, showed errors in second generation sequencing assemblies. Specifically, in the Y. ruckeri 150 and Y. ruckeri ATCC29473 genome assemblies, we mapped the entire pYR3 plasmid sequence. Placing plasmid sequences on the chromosome can result in erroneous biological conclusions. Thus, PacBio sequencing or similar long-read methods should always be preferred for de novo genome sequencing. As the tra operons of pYR3, although misplaced on the chromosome during the genome assembly process, were demonstrated to have an effect on virulence, and type IV pili are virulence factors in many bacteria, we suggest that pYR4 directly contributes to Y. ruckeri virulence.


September 22, 2019  |  

Targeted genotyping of variable number tandem repeats with adVNTR.

Whole-genome sequencing is increasingly used to identify Mendelian variants in clinical pipelines. These pipelines focus on single-nucleotide variants (SNVs) and also structural variants, while ignoring more complex repeat sequence variants. Here, we consider the problem of genotyping Variable Number Tandem Repeats (VNTRs), composed of inexact tandem duplications of short (6-100 bp) repeating units. VNTRs span 3% of the human genome, are frequently present in coding regions, and have been implicated in multiple Mendelian disorders. Although existing tools recognize VNTR carrying sequence, genotyping VNTRs (determining repeat unit count and sequence variation) from whole-genome sequencing reads remains challenging. We describe a method, adVNTR, that uses hidden Markov models to model each VNTR, count repeat units, and detect sequence variation. adVNTR models can be developed for short-read (Illumina) and single-molecule (Pacific Biosciences [PacBio]) whole-genome and whole-exome sequencing, and show good results on multiple simulated and real data sets.© 2018 Bakhtiari et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

A continuous genome assembly of the corkwing wrasse (Symphodus melops).

The wrasses (Labridae) are one of the most successful and species-rich families of the Perciformes order of teleost fish. Its members display great morphological diversity, and occupy distinct trophic levels in coastal waters and coral reefs. The cleaning behaviour displayed by some wrasses, such as corkwing wrasse (Symphodus melops), is of particular interest for the salmon aquaculture industry to combat and control sea lice infestation as an alternative to chemicals and pharmaceuticals. There are still few genome assemblies available within this fish family for comparative and functional studies, despite the rapid increase in genome resources generated during the past years. Here, we present a highly continuous genome assembly of the corkwing wrasse using PacBio SMRT sequencing (x28.8) followed by error correction with paired-end Illumina data (x132.9). The present genome assembly consists of 5040 contigs (N50?=?461,652?bp) and a total size of 614 Mbp, of which 8.5% of the genome sequence encode known repeated elements. The genome assembly covers 94.21% of highly conserved genes across ray-finned fish species. We find evidence for increased copy numbers specific for corkwing wrasse possibly highlighting diversification and adaptive processes in gene families including N-linked glycosylation (ST8SIA6) and stress response kinases (HIPK1). By comparative analyses, we discover that de novo repeats, often not properly investigated during genome annotation, encode hundreds of immune-related genes. This new genomic resource, together with the ballan wrasse (Labrus bergylta), will allow for in-depth comparative genomics as well as population genetic analyses for the understudied wrasses. Copyright © 2018 Elsevier Inc. All rights reserved.


September 22, 2019  |  

How complete are “complete” genome assemblies?-An avian perspective.

The genomics revolution has led to the sequencing of a large variety of nonmodel organisms often referred to as “whole” or “complete” genome assemblies. But how complete are these, really? Here, we use birds as an example for nonmodel vertebrates and find that, although suitable in principle for genomic studies, the current standard of short-read assemblies misses a significant proportion of the expected genome size (7% to 42%; mean 20 ± 9%). In particular, regions with strongly deviating nucleotide composition (e.g., guanine-cytosine-[GC]-rich) and regions highly enriched in repetitive DNA (e.g., transposable elements and satellite DNA) are usually underrepresented in assemblies. However, long-read sequencing technologies successfully characterize many of these underrepresented GC-rich or repeat-rich regions in several bird genomes. For instance, only ~2% of the expected total base pairs are missing in the last chicken reference (galGal5). These assemblies still contain thousands of gaps (i.e., fragmented sequences) because some chromosomal structures (e.g., centromeres) likely contain arrays of repetitive DNA that are too long to bridge with currently available technologies. We discuss how to minimize the number of assembly gaps by combining the latest available technologies with complementary strengths. At last, we emphasize the importance of knowing the location, size and potential content of assembly gaps when making population genetic inferences about adjacent genomic regions.© 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


September 22, 2019  |  

Computational tools to unmask transposable elements.

A substantial proportion of the genome of many species is derived from transposable elements (TEs). Moreover, through various self-copying mechanisms, TEs continue to proliferate in the genomes of most species. TEs have contributed numerous regulatory, transcript and protein innovations and have also been linked to disease. However, notwithstanding their demonstrated impact, many genomic studies still exclude them because their repetitive nature results in various analytical complexities. Fortunately, a growing array of methods and software tools are being developed to cater for them. This Review presents a summary of computational resources for TEs and highlights some of the challenges and remaining gaps to perform comprehensive genomic analyses that do not simply ‘mask’ repeats.


September 22, 2019  |  

TranSurVeyor: an improved database-free algorithm for finding non-reference transpositions in high-throughput sequencing data.

Transpositions transfer DNA segments between different loci within a genome; in particular, when a transposition is found in a sample but not in a reference genome, it is called a non-reference transposition. They are important structural variations that have clinical impact. Transpositions can be called by analyzing second generation high-throughput sequencing datasets. Current methods follow either a database-based or a database-free approach. Database-based methods require a database of transposable elements. Some of them have good specificity; however this approach cannot detect novel transpositions, and it requires a good database of transposable elements, which is not yet available for many species. Database-free methods perform de novo calling of transpositions, but their accuracy is low. We observe that this is due to the misalignment of the reads; since reads are short and the human genome has many repeats, false alignments create false positive predictions while missing alignments reduce the true positive rate. This paper proposes new techniques to improve database-free non-reference transposition calling: first, we propose a realignment strategy called one-end remapping that corrects the alignments of reads in interspersed repeats; second, we propose a SNV-aware filter that removes some incorrectly aligned reads. By combining these two techniques and other techniques like clustering and positive-to-negative ratio filter, our proposed transposition caller TranSurVeyor shows at least 3.1-fold improvement in terms of F1-score over existing database-free methods. More importantly, even though TranSurVeyor does not use databases of prior information, its performance is at least as good as existing database-based methods such as MELT, Mobster and Retroseq. We also illustrate that TranSurVeyor can discover transpositions that are not known in the current database.


September 22, 2019  |  

Tracing back multidrug-resistant bacteria in fresh herb production: from chive to source through the irrigation water chain.

Environmental antibiotic-resistant bacteria (ARB) can be transferred to humans through foods. Fresh produce in particular is an ideal vector due to frequent raw consumption. A major contamination source of fresh produce is irrigation water. We hypothesized that water quality significantly affects loads of ARB and their diversity on fresh produce despite various other contamination sources present under agricultural practice conditions. Chive irrigated from an open-top reservoir or sterile-filtered water (control) was examined. Heterotrophic plate counts (HPC) and ARB were determined for water and chive with emphasis on Escherichia coli and Enterococcus spp. High HPC of freshly planted chive decreased over time and were significantly lower on control- vs. reservoir-irrigated chive at harvest (1.3 log (CFU/g) lower). Ciprofloxacin- and ceftazidime-resistant bacteria were significantly lower on control-irrigated chive at harvest and end of shelf life (up to 1.8 log (CFU/g) lower). Escherichia coli and Enterococcus spp. repeatedly isolated from water and chive proved resistant to up to six or four antibiotic classes (80% or 49% multidrug-resistant, respectively). Microbial source tracking identified E. coli-ST1056 along the irrigation chain and on chive. Whole-genome sequencing revealed that E. coli-ST1056 from both environments were clonal and carried the same transmissible multidrug-resistance plasmid, proving water as source of chive contamination. These findings emphasize the urgent need for guidelines concerning ARB in irrigation water and development of affordable water disinfection technologies to diminish ARB on irrigated produce.


September 22, 2019  |  

Full gene HLA class I sequences of 79 novel and 519 mostly uncommon alleles from a large United States registry population.

HLA class I assignments were obtained at single genotype, G-level resolution from 98?855 volunteers for an unrelated donor registry in the United States. In spite of the diverse ancestry of the volunteers, over 99% of the assignments at each locus are common. Within this population, 52 novel alleles differing in exons 2 and 3 are identified and characterized. Previously reported alleles with incomplete sequences in the IPD-IMGT/HLA database (n?=?519) were selected for full gene sequencing and, from this sampling, another 27 novel alleles are described.© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


September 22, 2019  |  

Functional metagenomics identifies an exosialidase with an inverting catalytic mechanism that defines a new glycoside hydrolase family (GH156).

Exosialidases are glycoside hydrolases that remove a single terminal sialic acid residue from oligosaccharides. They are widely distributed in biology, having been found in prokaryotes, eukaryotes, and certain viruses. Most characterized prokaryotic sialidases are from organisms that are pathogenic or commensal with mammals. However, in this study, we used functional metagenomic screening to seek microbial sialidases encoded by environmental DNA isolated from an extreme ecological niche, a thermal spring. Using recombinant expression of potential exosialidase candidates and a fluorogenic sialidase substrate, we discovered an exosialidase having no homology to known sialidases. Phylogenetic analysis indicated that this protein is a member of a small family of bacterial proteins of previously unknown function. Proton NMR revealed that this enzyme functions via an inverting catalytic mechanism, a biochemical property that is distinct from those of known exosialidases. This unique inverting exosialidase defines a new CAZy glycoside hydrolase family we have designated GH156.© 2018 Chuzel et al.


September 22, 2019  |  

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.