July 7, 2019  |  

Analysis of resistance genes of clinical Pannonibacter phragmitetus strain 31801 by complete genome sequencing.

To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using PHAST, CRISPRfinder, and the Virulence Factors Database, respectively. The circular chromosome and single plasmid of P. phragmitetus 31801 contained multiple antibiotic resistance genes, including those coding for three different types of ß-lactamase [NPS ß-lactamase (EC 3.5.2.6), ß-lactamase class C, and a metal-dependent hydrolase of ß-lactamase superfamily I]. In addition, genes coding for subunits of several multidrug-resistance efflux pumps were identified, including those targeting macrolides (adeJ, cmeB), tetracycline (acrB, adeAB), fluoroquinolones (acrF, ceoB), and aminoglycosides (acrD, amrB, ceoB, mexY, smeB). However, apart from the tripartite macrolide efflux pump macAB-tolC, the genome did not appear to contain the complete complement of subunit genes required for production of most of the major multidrug-resistance efflux pumps.


July 7, 2019  |  

Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic Rhizobia.

Rhizobia are a paraphyletic group of soil-borne bacteria that induce nodule organogenesis in legume roots and fix atmospheric nitrogen for plant growth. In non-leguminous plants, species from the Rhizobiales order define a core lineage of the plant microbiota, suggesting additional functional interactions with plant hosts. In this work, genome analyses of 1,314 Rhizobiales isolates along with amplicon studies of the root microbiota reveal the evolutionary history of nitrogen-fixing symbiosis in this bacterial order. Key symbiosis genes were acquired multiple times, and the most recent common ancestor could colonize roots of a broad host range. In addition, root growth promotion is a characteristic trait of Rhizobiales in Arabidopsis thaliana, whereas interference with plant immunity constitutes a separate, strain-specific phenotype of root commensal Alphaproteobacteria. Additional studies with a tripartite gnotobiotic plant system reveal that these traits operate in a modular fashion and thus might be relevant to microbial homeostasis in healthy roots. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Pseudomonas aeruginosa K34-7, a carbapenem-resistant isolate of the high-risk sequence type 233.

Carbapenem-resistant Pseudomonas aeruginosa is defined as a textquotedblleftcriticaltextquotedblright priority pathogen for the development of new antibiotics. Here we report the complete genome sequence of an extensively drug-resistant, Verona integron-encoded metallo-ß-lactamase-expressing isolate belonging to the high-risk sequence type 233.


July 7, 2019  |  

Transposon insertion sequencing elucidates novel gene involvement in susceptibility and resistance to phages T4 and T7 in Escherichia coli O157.

Experiments using bacteriophage (phage) to infect bacterial strains have helped define some basic genetic concepts in microbiology, but our understanding of the complexity of bacterium-phage interactions is still limited. As the global threat of antibiotic resistance continues to increase, phage therapy has reemerged as an attractive alternative or supplement to treating antibiotic-resistant bacterial infections. Further, the long-used method of phage typing to classify bacterial strains is being replaced by molecular genetic techniques. Thus, there is a growing need for a complete understanding of the precise molecular mechanisms underpinning phage-bacterium interactions to optimize phage therapy for the clinic as well as for retrospectively interpreting phage typing data on the molecular level. In this study, a genomics-based fitness assay (TraDIS) was used to identify all host genes involved in phage susceptibility and resistance for a T4 phage infecting Shiga-toxigenic Escherichia coli O157. The TraDIS results identified both established and previously unidentified genes involved in phage infection, and a subset were confirmed by site-directed mutagenesis and phenotypic testing of 14 T4 and 2 T7 phages. For the first time, the entire sap operon was implicated in phage susceptibility and, conversely, the stringent starvation protein A gene (sspA) was shown to provide phage resistance. Identifying genes involved in phage infection and replication should facilitate the selection of bespoke phage combinations to target specific bacterial pathogens.IMPORTANCE Antibiotic resistance has diminished treatment options for many common bacterial infections. Phage therapy is an alternative option that was once popularly used across Europe to kill bacteria within humans. Phage therapy acts by using highly specific viruses (called phages) that infect and lyse certain bacterial species to treat the infection. Whole-genome sequencing has allowed modernization of the investigations into phage-bacterium interactions. Here, using E. coli O157 and T4 bacteriophage as a model, we have exploited a genome-wide fitness assay to investigate all genes involved in defining phage resistance or susceptibility. This knowledge of the genetic determinants of phage resistance and susceptibility can be used to design bespoke phage combinations targeted to specific bacterial infections for successful infection eradication. Copyright © 2018 Cowley et al.


July 7, 2019  |  

Low-level antimicrobials in the medicinal leech select for resistant pathogens that spread to patients.

Fluoroquinolones (FQs) and ciprofloxacin (Cp) are important antimicrobials that pollute the environment in trace amounts. Although Cp has been recommended as prophylaxis for patients undergoing leech therapy to prevent infections by the leech gut symbiont Aeromonas, a puzzling rise in Cp-resistant (Cpr) Aeromonas infections has been reported. We report on the effects of subtherapeutic FQ concentrations on bacteria in an environmental reservoir, the medicinal leech, and describe the presence of multiple antibiotic resistance mutations and a gain-of-function resistance gene. We link the rise of CprAeromonas isolates to exposure of the leech microbiota to very low levels of Cp (0.01 to 0.04 µg/ml), <1/100 of the clinical resistance breakpoint for Aeromonas Using competition experiments and comparative genomics of 37 strains, we determined the mechanisms of resistance in clinical and leech-derived Aeromonas isolates, traced their origin, and determined that the presence of merely 0.01 µg/ml Cp provides a strong competitive advantage for Cpr strains. Deep-sequencing the Cpr-conferring region of gyrA enabled tracing of the mutation-harboring Aeromonas population in archived gut samples, and an increase in the frequency of the Cpr-conferring mutation in 2011 coincides with the initial reports of CprAeromonas infections in patients receiving leech therapy.IMPORTANCE The role of subtherapeutic antimicrobial contamination in selecting for resistant strains has received increasing attention and is an important clinical matter. This study describes the relationship of resistant bacteria from the medicinal leech, Hirudo verbana, with patient infections following leech therapy. While our results highlight the need for alternative antibiotic therapies, the rise of Cpr bacteria demonstrates the importance of restricting the exposure of animals to antibiotics approved for veterinary use. The shift to a more resistant community and the dispersion of Cpr-conferring mechanisms via mobile elements occurred in a natural setting due to the presence of very low levels of fluoroquinolones, revealing the challenges of controlling the spread of antibiotic-resistant bacteria and highlighting the importance of a holistic approach in the management of antibiotic use. Copyright © 2018 Beka et al.


July 7, 2019  |  

Complete genome sequence of industrial biocontrol strain Paenibacillus polymyxa HY96-2 and further analysis of Its biocontrol mechanism.

Paenibacillus polymyxa (formerly known as Bacillus polymyxa) has been extensively studied for agricultural applications as a plant-growth-promoting rhizobacterium and is also an important biocontrol agent. Our team has developed the P. polymyxa strain HY96-2 from the tomato rhizosphere as the first microbial biopesticide based on P. polymyxa for controlling plant diseases around the world, leading to the commercialization of this microbial biopesticide in China. However, further research is essential for understanding its precise biocontrol mechanisms. In this paper, we report the complete genome sequence of HY96-2 and the results of a comparative genomic analysis between different P. polymyxa strains. The complete genome size of HY96-2 was found to be 5.75 Mb and 5207 coding sequences were predicted. HY96-2 was compared with seven other P. polymyxa strains for which complete genome sequences have been published, using phylogenetic tree, pan-genome, and nucleic acid co-linearity analysis. In addition, the genes and gene clusters involved in biofilm formation, antibiotic synthesis, and systemic resistance inducer production were compared between strain HY96-2 and two other strains, namely, SC2 and E681. The results revealed that all three of the P. polymyxa strains have the ability to control plant diseases via the mechanisms of colonization (biofilm formation), antagonism (antibiotic production), and induced resistance (systemic resistance inducer production). However, the variation of the corresponding genes or gene clusters between the three strains may lead to different antimicrobial spectra and biocontrol efficacies. Two possible pathways of biofilm formation in P. polymyxa were reported for the first time after searching the KEGG database. This study provides a scientific basis for the further optimization of the field applications and quality standards of industrial microbial biopesticides based on HY96-2. It may also serve as a reference for studying the differences in antimicrobial spectra and biocontrol capability between different biocontrol agents.


July 7, 2019  |  

Characterization and genome analysis of a phthalate esters-degrading strain Sphingobium yanoikuyae SHJ.

A bacterium capable of utilizing dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and diisobuthyl phthalate (DIBP) as the sole carbon and energy source was isolated from shallow aquifer sediments. The strain was identified as Sphingobium yanoikuyae SHJ based on morphological characteristics, 16S rDNA gene phylogeny, and whole genome average nucleotide identity (ANI). The degradation half-life of DBP with substrate concentration of 8.5 and 50.0 mg/L by strain SHJ was 99.7 and 101.4 hours, respectively. The optimum degradation rate of DBP by SHJ was observed at 30°C and weak alkaline (pH 7.5). Genome sequence of the strain SHJ showed a circular chromosome and additional two circular plasmids with whole genome size of 5,669,383 bp and GC content of 64.23%. Functional annotation of SHJ revealed a total of 5,402 genes, with 5,183 protein-encoding genes, 143 pseudogenes, and 76 noncoding RNA genes. Based on genome annotation, 44 genes were identified to be involved in PAEs hydrolysis potentially. Besides, a region with size of about 6.9 kb comprised of seven ORFs, which is located on the smaller plasmid pSES189, was presumed to be responsible for the biodegradation of phthalate. These results provide insights into the genetic basis of DBP biodegradation in this strain.


July 7, 2019  |  

Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium.

Environmental pollution caused by the release of industrial chemicals is currently one of the most important environmental harms. Manufacturing chemicals can be biodegraded, and valuable intermediates can be used as pharmacophores in drug targeting and have several other useful purposes. Hexabromocyclododecane (HBCD), a non-aromatic brominated flame retardant, is a toxic compound that consists of a cycloaliphatic ring of 12 carbon atoms to which six bromine atoms are attached. It is formed by bromination of cis-trans-trans-1,5,9-cyclododecatriene, but its use is now restricted in several countries, because it is an environmental pollutant. Little is known about whether bacteria can degrade HBCD. A bacterial strain that degrades HBCD was recently isolated using enrichment culture techniques. Based on morphological, biochemical and phylogenetic analysis this isolate was categorized as Bacillus cereus and named strain HBCD-sjtu. Maximum growth and HBCD-degrading activity were observed when this strain was grown at 30 °C, pH 7.0 and 200 RPM in mineral salt medium containing 0.5 mm HBCD. The genome of strain HBCD-sjtu, which consists of only one circular chromosome, was sequenced. This whole genome sequence will be crucial for illuminating the molecular mechanisms of HBCD degradation.


July 7, 2019  |  

Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30T.

Oharaeibacter diazotrophicus strain SM30T, isolated from rice rhizosphere, is an aerobic, facultative lanthanide (Ln3+)-utilizing methylotroph and diazotroph that belongs to the Methylocystaceae family. In this research, the complete genome sequence of strain SM30T was determined, and its methylotrophy modules were characterized. The genome consists of one chromosome and two plasmids, comprising a total of 5,004,097 bp, and the GC content was 71.6 mol%. A total of 4497 CDSs, 67 tRNA, and 9 rRNA were encoded. Typical alpha-proteobacterial methylotrophy genes were found: pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) (mxaF and xoxF1-4), methylotrophy regulatory proteins (mxbDM and mxcQE), PQQ synthesis, H4F pathway, H4MPT pathway, formate oxidation, serine cycle, and ethylmalonyl-CoA pathway. SDS-PAGE and subsequent LC-MS analysis, and qPCR analysis revealed that MxaF and XoxF1 were the dominant MDH in the absence or presence of lanthanum (La3+), respectively. The growth of MDH gene-deletion mutants on alcohols and qPCR results indicated that mxaF and xoxF1 are also involved in ethanol and propanol oxidation, xoxF2 participates in methanol oxidation in the presence of La3+, while xoxF3 was associated with methanol and ethanol oxidation in the absence of La3+, implying that XoxF3 is a calcium (Ca2+)-binding XoxF. Four Ln3+ such as La3+, cerium (Ce3+), praseodymium (Pr3+), and neodymium (Nd3+) served as cofactors for XoxF1 by supporting ?mxaF growth on methanol. Some heavier lanthanides inhibited growth of SM30 on methanol. This study contributes to the understanding of the function of various XoxF-type MDHs and their roles in methylotrophs. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.


July 7, 2019  |  

Bioaugmentated activated sludge degradation of progesterone: Kinetics and mechanism

Progesterone (PGT) is not completely removed in conventional treatment plants, and the processing results may have adverse effects on aquatic organisms. In this study, an effective PGT-degradation bacterium, Rhodococcus sp. HYW, was newly isolated from the pharmaceutical plant and was used to augment degradation of PGT. When grown in a mineral medium (MM) containing a trace amount of PGT (500?µg/L) as the sole carbon and energy source, the results show that 99% of PGT was degraded within 1?h and followed the first-order reaction kinetics. Bioaugmentation of PGT-contaminated activated sludge greatly enhanced the PGT degradation rate (~91%) and its derivatives degradation rate were also greatly improved (>83%). The process of PGT degradation in non-bioaugmented PGT-contaminated activated sludge (NBS) and bioaugmentation activated sludge with the bacterial consortium(BS) also conforms to the first-order kinetic model. Furthermore, 12 and 11 biodegradation products for PGT in the NBS and BS were identified using HPLC-LTQ-Orbitrap XL™, respectively. Based on these biodegradation products, two degradation pathways for PGT in NBS and BS were proposed, respectively. Comparing the degradation kinetics and metabolites, it was found that BS degrades PGT more rapidly and can further convert PGT to a small molecular acid. Finally, to reveal the probable cause for the differences in the PGT degradation efficiency and products in the NBS and BS.


July 7, 2019  |  

Industrially-scalable microencapsulation of plant beneficial bacteria in dry cross-linked alginate matrix.

Microencapsulation of plant-beneficial bacteria, such as pink pigmented facultative methylotrophs (PPFM), may greatly extend the shelf life of these Gram-negative microorganisms and facilitate their application to crops for sustainable agriculture. A species of PPFM designated Methylobacterium radiotolerans was microencapsulated in cross-linked alginate microcapsules (CLAMs) prepared by an innovative and industrially scalable process that achieves polymer cross-linking during spray-drying. PPFM survived the spray-drying microencapsulation process with no significant loss in viable population, and the initial population of PPFM in CLAMs exceeded 1010 CFU/g powder. The PPFM population in CLAMs gradually declined by 4 to 5 log CFU/g over one year of storage. The extent of alginate cross-linking, modulated by adjusting the calcium phosphate content in the spray-dryer feed, did not influence cell viability after spray-drying, viability over storage, or dry particle size. However, particle size measurements and light microscopy of aqueous CLAMs suggest that enhanced crosslinking may limit the release of encapsulated bacteria. This work demonstrates an industrially scalable method for producing alginate-based inoculants that may be suitable for on-seed or foliar spray applications.


July 7, 2019  |  

Complete genome sequence of Marinobacterium aestuarii ST58-10T, a benzene-degrading bacterium isolated from estuarine sediment.

Marinobacterium aestuarii ST58-10Twas identified as a benzene-degrading aerobic bacterium isolated from estuarine sediment in the Republic of Korea. The ge- nome of strain ST58-10Twas found to be composed of a single circular chromosome (5,191,608bp) with a G+C content of 58.78% and harboring 4,473 protein-coding genes. The assembled sequence data will help elucidate potential metabolic pathways and mechanisms responsible for the hydrocarbon-degrading ability of M. aestuarii ST58-10T.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.