Menu
April 21, 2020  |  

Draft Genome Sequences of Shiga Toxin-Producing Escherichia coli O157:H7 Strains Recovered from a Major Production Region for Leafy Greens in California.

Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen and is responsible for outbreaks of human gastroenteritis. This report documents the draft genome sequences of nine O157:H7 cattle strains, which were identified to be PCR positive for a Shiga toxin gene but displayed different levels of functional toxin activity.


April 21, 2020  |  

Complete Whole-Genome Sequences of Two Raoultella terrigena Strains, NCTC 13097 and NCTC 13098, Isolated from Human Cases.

Raoultella terrigena is a bacterial species associated with soil and aquatic environments; however, sporadic cases of opportunistic disease in humans have been reported. Here, we report the first two complete genome sequences from clinical strains isolated from human sources that have been deposited in the National Collection of Type Cultures (NCTC). © Crown copyright 2019.


April 21, 2020  |  

Draft Genome Sequence of the Wood-Decaying Fungus Xylaria sp. BCC 1067.

Xylaria sp. BCC 1067 is a wood-decaying fungus which is capable of producing lignocellulolytic enzymes. Based on the results of a single-molecule real-time sequencing technology analysis, we present the first draft genome of Xylaria sp. BCC 1067, comprising 54.1?Mb with 12,112 protein-coding genes.Copyright © 2019 Sutheeworapong et al.


April 21, 2020  |  

The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory clpP Gene as a Novel Antibiotic Resistance Factor.

The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have remained elusive. In this study, we identified and analyzed the ADEP biosynthetic gene cluster in S. hawaiiensis NRRL 15010, which comprises two NRPSs, genes necessary for the biosynthesis of (4S,2R)-4-methylproline, and a type II polyketide synthase (PKS) for the assembly of highly reduced polyenes. While no resistance factor could be identified within the gene cluster itself, we discovered an additional clpP homologous gene (named clpPADEP) located further downstream of the biosynthetic genes, separated from the biosynthetic gene cluster by several transposable elements. Heterologous expression of ClpPADEP in three ADEP-sensitive Streptomyces species proved its role in conferring ADEP resistance, thereby revealing a novel type of antibiotic resistance determinant.IMPORTANCE Antibiotic acyldepsipeptides (ADEPs) represent a promising new class of potent antibiotics and, at the same time, are valuable tools to study the molecular functioning of their target, ClpP, the proteolytic core of the bacterial caseinolytic protease. Here, we present a straightforward purification procedure for ADEP1 that yields substantial amounts of the pure compound in a time- and cost-efficient manner, which is a prerequisite to conveniently study the antimicrobial effects of ADEP and the operating mode of bacterial ClpP machineries in diverse bacteria. Identification and characterization of the ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 enables future bioinformatics screenings for similar gene clusters and/or subclusters to find novel natural compounds with specific substructures. Most strikingly, we identified a cluster-associated clpP homolog (named clpPADEP) as an ADEP resistance gene. ClpPADEP constitutes a novel bacterial resistance factor that alone is necessary and sufficient to confer high-level ADEP resistance to Streptomyces across species.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants.

A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Complete Genome Sequence of the Corallopyronin A-Producing Myxobacterium Corallococcus coralloides B035.

Myxobacteria are a source of unique metabolites, including corallopyronin A (CorA), a promising antibiotic agent in preclinical development for the treatment of filariasis. To investigate the production of CorA on the genetic level, we present the complete 9.6-Mb genome sequence of the CorA producer Corallococcus coralloides B035. Copyright © 2019 Bouhired et al.


April 21, 2020  |  

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains being resistant to both agents. The rate of resistance to colistin increased significantly (p?


April 21, 2020  |  

Heterologous Expression of Ilicicolin H Biosynthetic Gene Cluster and Production of a New Potent Antifungal Reagent, Ilicicolin J.

Ilicicolin H is a broad-spectrum antifungal agent targeting mitochondrial cytochrome bc1 reductase. Unfortunately, ilicicolin H shows reduced activities in vivo. Here, we report our effort on the identification of ilicicolin H biosynthetic gene cluster (BGC) by genomic sequencing a producing strain, Neonectria sp. DH2, and its heterologous production in Aspergillus nidulans. In addition, a shunt product with similar antifungal activities, ilicicolin J, was uncovered. This effort would provide a base for future combinatorial biosynthesis of ilicicolin H analogues. Bioinformatics analysis suggests that the backbone of ilicicolin H is assembled by a polyketide-nonribosomal peptide synthethase (IliA), and then offloaded with a tetramic acid moiety. Similar to tenellin biosynthesis, the tetramic acid is then converted to pyridone by a putative P450, IliC. The decalin portion is most possibly constructed by a S-adenosyl-l-methionine (SAM)-dependent Diels-Alderase (IliD).


April 21, 2020  |  

Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli.

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.Copyright © 2019 Mahérault et al.


April 21, 2020  |  

Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects.

The Chinese white wax scale insect, Ericerus pela, is best known for producing wax, which has been widely used in candle production, casting, Chinese medicine, and wax printing products for thousands of years. The secretion of wax, and other unusual features of scale insects, is thought to be an adaptation to their change from an ancestral ground-dwelling lifestyle to a sedentary lifestyle on the higher parts of plants. As well as helping to improve its economic value, studies of E. pela might also help to explain the adaptation of scale insects. However, no genomic data are currently available for E. pela.To assemble the E. pela genome, 303.92 Gb of data were generated using Illumina and Pacific Biosciences sequencing, producing 277.22 Gb of clean data for assembly. The assembled genome size was 0.66 Gb, with 1,979 scaffolds and a scaffold N50 of 735 kb. The guanine + cytosine content was 33.80%. A total of 12,022 protein-coding genes were predicted, with a mean coding sequence length of 1,370 bp. Twenty-six fatty acyl-CoA reductase genes and 35 acyltransferase genes were identified. Evolutionary analysis revealed that E. pela and aphids formed a sister group and split ~241.1 million years ago. There were 214 expanded gene families and 2,219 contracted gene families in E. pela.We present the first genome sequence from the Coccidae family. These results will help to increase our understanding of the evolution of unique features in scale insects, and provide important genetic information for further research. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

The blaNDM-1-Carrying IncA/C2 Plasmid Underlies Structural Alterations and Cointegrate Formation In Vivo.

In 2012, a carbapenemase-producing Salmonella enterica serovar Corvallis isolate carrying a blaNDM-1 multiresistance IncA/C2 plasmid, apart from IncHI2 and ColE-like plasmids, was detected in a wild bird in Germany. In a recent broiler chicken infection study, we observed transfer of this blaNDM-1-carrying IncA/C2 plasmid to other Enterobacteriaceae Here, we focused on the stability of this plasmid and gained insight into the type and frequency of its structural alterations after an in vivo passage in a broiler chicken infection study.Copyright © 2019 Hadziabdic et al.


April 21, 2020  |  

Complete Genome Sequences of Bacteriocin-Producing Streptococcus thermophilus Strains ST106 and ST109.

Streptococcus thermophilus strains ST106 and ST109 produce broad-spectrum bacteriocins encoded within a bacteriocin-like peptide (blp) gene cluster. This study reports the complete genome sequences for both strains, with the ST109 chromosome containing 1,788,866 nucleotides (nt) and 1,572 predicted genes, and ST106 having 1,856,083 nt and 1,601 predicted genes.


April 21, 2020  |  

Complete Genome Sequence of Halocella sp. Strain SP3-1, an Extremely Halophilic, Glycoside Hydrolase- and Bacteriocin-Producing Bacterium Isolated from a Salt Evaporation Pond.

Halocella sp. strain SP3-1, a cellulose-degrading bacterium, was isolated from a hypersaline evaporation pond in Thailand. Here, we report the first complete genome sequence of strain SP3-1. This species has a genome size of 4,035,760 bases, and the genome contains several genes encoding cellulose, hemicellulose, starch-degrading enzymes, and bacteriocins.


April 21, 2020  |  

The genome assembly and annotation of yellowhorn (Xanthoceras sorbifolium Bunge).

Yellowhorn (Xanthoceras sorbifolium Bunge), a deciduous shrub or small tree native to north China, is of great economic value. Seeds of yellowhorn are rich in oil containing unsaturated long-chain fatty acids that have been used for producing edible oil and nervonic acid capsules. However, the lack of a high-quality genome sequence hampers the understanding of its evolution and gene functions.In this study, a whole genome of yellowhorn was sequenced and assembled by integration of Illumina sequencing, Pacific Biosciences single-molecule real-time sequencing, 10X Genomics linked reads, Bionano optical maps, and Hi-C. The yellowhorn genome assembly was 439.97 Mb, which comprised 15 pseudo-chromosomes covering 95.42% (419.84 Mb) of the assembled genome. The repetitive fractions accounted for 56.39% of the yellowhorn genome. The genome contained 21,059 protein-coding genes. Of them, 18,503 (87.86%) genes were found to be functionally annotated with =1 “annotation” term by searching against other databases. Transcriptomic analysis showed that 341, 135, 125, 113, and 100 genes were specifically expressed in hermaphrodite flower, staminate flower, young fruit, leaf, and shoot, respectively. Phylogenetic analysis suggested that yellowhorn and Dimocarpus longan diverged from their most recent common ancestor ~46 million years ago.The availability and subsequent annotation of the yellowhorn genome, as well as the identification of tissue-specific functional genes, provides a valuable reference for plant comparative genomics, evolutionary studies, and molecular design breeding. © The Author(s) 2019. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.