Menu
September 22, 2019

Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.


September 22, 2019

Sequence motifs associated with paternal transmission of mitochondrial DNA in the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae).

In the majority of metazoans paternal mitochondria represent evolutionary dead-ends. In many bivalves, however, this paradigm does not hold true; both maternal and paternal mitochondria are inherited. Herein, we characterize maternal and paternal mitochondrial control regions of the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). The maternal control region is 808bp long, while the paternal control region is longer at 2.3kb. We hypothesize that the size difference is due to a combination of repeated duplications within the control region of the paternal mtDNA genome, as well as an evolutionarily ancient recombination event between two sex-associated mtDNA genomes that led to the insertion of a second control region sequence in the genome that is now transmitted via males. In a comparison to other mytilid male control regions, we identified two evolutionarily Conserved Motifs, CMA and CMB, associated with paternal transmission of mitochondrial DNA. CMA is characterized by a conserved purine/pyrimidine pattern, while CMB exhibits a specific 13bp nucleotide string within a stem and loop structure. The identification of motifs CMA and CMB in M. modiolus extends our understanding of Sperm Transmission Elements (STEs) that have recently been identified as being associated with the paternal transmission of mitochondria in marine bivalves. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019

Single molecule, full-length transcript sequencing provides insight into the extreme metabolism of ruby-throated hummingbird Archilochus colubris

Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids, derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding a total of 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism.


September 22, 2019

Isoform evolution in primates through independent combination of alternative RNA processing events.

Recent RNA-seq technology revealed thousands of splicing events that are under rapid evolution in primates, whereas the reliability of these events, as well as their combination on the isoform level, have not been adequately addressed due to its limited sequencing length. Here, we performed comparative transcriptome analyses in human and rhesus macaque cerebellum using single molecule long-read sequencing (Iso-seq) and matched RNA-seq. Besides 359 million RNA-seq reads, 4,165,527 Iso-seq reads were generated with a mean length of 14,875?bp, covering 11,466 human genes, and 10,159 macaque genes. With Iso-seq data, we substantially expanded the repertoire of alternative RNA processing events in primates, and found that intron retention and alternative polyadenylation are surprisingly more prevalent in primates than previously estimated. We then investigated the combinatorial mode of these alternative events at the whole-transcript level, and found that the combination of these events is largely independent along the transcript, leading to thousands of novel isoforms missed by current annotations. Notably, these novel isoforms are selectively constrained in general, and 1,119 isoforms have even higher expression than the previously annotated major isoforms in human, indicating that the complexity of the human transcriptome is still significantly underestimated. Comparative transcriptome analysis further revealed 502 genes encoding selectively constrained, lineage-specific isoforms in human but not in rhesus macaque, linking them to some lineage-specific functions. Overall, we propose that the independent combination of alternative RNA processing events has contributed to complex isoform evolution in primates, which provides a new foundation for the study of phenotypic difference among primates.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019

Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics.

To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal ‘rDNAome’ consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues.


September 22, 2019

First draft genome of an iconic clownfish species (Amphiprion frenatus).

Clownfishes (or anemonefishes) form an iconic group of coral reef fishes, principally known for their mutualistic interaction with sea anemones. They are characterized by particular life history traits, such as a complex social structure and mating system involving sequential hermaphroditism, coupled with an exceptionally long lifespan. Additionally, clownfishes are considered to be one of the rare groups to have experienced an adaptive radiation in the marine environment. Here, we assembled and annotated the first genome of a clownfish species, the tomato clownfish (Amphiprion frenatus). We obtained 17,801 assembled scaffolds, containing a total of 26,917 genes. The completeness of the assembly and annotation was satisfying, with 96.5% of the Actinopterygii Benchmarking Universal Single-Copy Orthologs (BUSCOs) being retrieved in A. frenatus assembly. The quality of the resulting assembly is comparable to other bony fish assemblies. This resource is valuable for advancing studies of the particular life history traits of clownfishes, as well as being useful for population genetic studies and the development of new phylogenetic markers. It will also open the way to comparative genomics. Indeed, future genomic comparison among closely related fishes may provide means to identify genes related to the unique adaptations to different sea anemone hosts, as well as better characterize the genomic signatures of an adaptive radiation.© 2018 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.


September 22, 2019

SimulaTE: simulating complex landscapes of transposable elements of populations.

Motivation Estimating the abundance of transposable elements (TEs) in populations (or tissues) promises to answer many open research questions. However, progress is hampered by the lack of concordance between different approaches for TE identification and thus potentially unreliable results. Results To address this problem, we developed SimulaTE a tool that generates TE landscapes for populations using a newly developed domain specific language (DSL). The simple syntax of our DSL allows for easily building even complex TE landscapes that have, for example, nested, truncated and highly diverged TE insertions. Reads may be simulated for the populations using different sequencing technologies (PacBio, Illumina paired-ends) and strategies (sequencing individuals and pooled populations). The comparison between the expected (i.e. simulated) and the observed results will guide researchers in finding the most suitable approach for a particular research question. Availability and implementation SimulaTE is implemented in Python and available at https://sourceforge.net/projects/simulates/. Manual https://sourceforge.net/p/simulates/wiki/Home/#manual; Test data and tutorials https://sourceforge.net/p/simulates/wiki/Home/#walkthrough; Validation https://sourceforge.net/p/simulates/wiki/Home/#validation. Contact robert.kofler@vetmeduni.ac.at


September 22, 2019

Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome.

Structural variation contributes substantially to polymorphism within species. Chromosomal rearrangements that impact genes can lead to functional variation among individuals and influence the expression of phenotypic traits. Genomes of fungal pathogens show substantial chromosomal polymorphism that can drive virulence evolution on host plants. Assessing the adaptive significance of structural variation is challenging, because most studies rely on inferences based on a single reference genome sequence.We constructed and analyzed the pangenome of Zymoseptoria tritici, a major pathogen of wheat that evolved host specialization by chromosomal rearrangements and gene deletions. We used single-molecule real-time sequencing and high-density genetic maps to assemble multiple genomes. We annotated the gene space based on transcriptomics data that covered the infection life cycle of each strain. Based on a total of five telomere-to-telomere genomes, we constructed a pangenome for the species and identified a core set of 9149 genes. However, an additional 6600 genes were exclusive to a subset of the isolates. The substantial accessory genome encoded on average fewer expressed genes but a larger fraction of the candidate effector genes that may interact with the host during infection. We expanded our analyses of the pangenome to a worldwide collection of 123 isolates of the same species. We confirmed that accessory genes were indeed more likely to show deletion polymorphisms and loss-of-function mutations compared to core genes.The pangenome construction of a highly polymorphic eukaryotic pathogen showed that a single reference genome significantly underestimates the gene space of a species. The substantial accessory genome provides a cradle for adaptive evolution.


September 22, 2019

Redkmer: An Assembly-Free Pipeline for the Identification of Abundant and Specific X-Chromosome Target Sequences for X-Shredding by CRISPR Endonucleases.

CRISPR-based synthetic sex ratio distorters, which operate by shredding the X-chromosome during male meiosis, are promising tools for the area-wide control of harmful insect pest or disease vector species. X-shredders have been proposed as tools to suppress insect populations by biasing the sex ratio of the wild population toward males, thus reducing its natural reproductive potential. However, to build synthetic X-shredders based on CRISPR, the selection of gRNA targets, in the form of high-copy sequence repeats on the X chromosome of a given species, is difficult, since such repeats are not accurately resolved in genome assemblies and cannot be assigned to chromosomes with confidence. We have therefore developed the redkmer computational pipeline, designed to identify short and highly abundant sequence elements occurring uniquely on the X chromosome. Redkmer was designed to use as input minimally processed whole genome sequence data from males and females. We tested redkmer with short- and long-read whole genome sequence data of Anopheles gambiae, the major vector of human malaria, in which the X-shredding paradigm was originally developed. Redkmer established long reads as chromosomal proxies with excellent correlation to the genome assembly and used them to rank X-candidate kmers for their level of X-specificity and abundance. Among these, a high-confidence set of 25-mers was identified, many belonging to previously known X-chromosome repeats of Anopheles gambiae, including the ribosomal gene array and the selfish elements harbored within it. Data from a control strain, in which these repeats are shared with the Y chromosome, confirmed the elimination of these kmers during filtering. Finally, we show that redkmer output can be linked directly to gRNA selection and off-target prediction. In addition, the output of redkmer, including the prediction of chromosomal origin of single-molecule long reads and chromosome specific kmers, could also be used for the characterization of other biologically relevant sex chromosome sequences, a task that is frequently hampered by the repetitiveness of sex chromosome sequence content.


September 22, 2019

Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species. This study highlights the prevalence of functionally coupled disease resistance genes and identifies many new haplotypes of potential use for future crop protection. Finally, this study marks a milestone in modern rice research with the release of a complete long-read assembly of IR 8 ‘Miracle Rice’, which relieved famine and drove the Green Revolution in Asia 50 years ago.


September 22, 2019

Jointly aligning a group of DNA reads improves accuracy of identifying large deletions.

Performing sequence alignment to identify structural variants, such as large deletions, from genome sequencing data is a fundamental task, but current methods are far from perfect. The current practice is to independently align each DNA read to a reference genome. We show that the propensity of genomic rearrangements to accumulate in repeat-rich regions imposes severe ambiguities in these alignments, and consequently on the variant calls-with current read lengths, this affects more than one third of known large deletions in the C. Venter genome. We present a method to jointly align reads to a genome, whereby alignment ambiguity of one read can be disambiguated by other reads. We show this leads to a significant improvement in the accuracy of identifying large deletions (=20 bases), while imposing minimal computational overhead and maintaining an overall running time that is at par with current tools. A software implementation is available as an open-source Python program called JRA at https://bitbucket.org/jointreadalignment/jra-src.


September 22, 2019

A survey of localized sequence rearrangements in human DNA.

Genomes mutate and evolve in ways simple (substitution or deletion of bases) and complex (e.g. chromosome shattering). We do not fully understand what types of complex mutation occur, and we cannot routinely characterize arbitrarily-complex mutations in a high-throughput, genome-wide manner. Long-read DNA sequencing methods (e.g. PacBio, nanopore) are promising for this task, because one read may encompass a whole complex mutation. We describe an analysis pipeline to characterize arbitrarily-complex ‘local’ mutations, i.e. intrachromosomal mutations encompassed by one DNA read. We apply it to nanopore and PacBio reads from one human cell line (NA12878), and survey sequence rearrangements, both real and artifactual. Almost all the real rearrangements belong to recurring patterns or motifs: the most common is tandem multiplication (e.g. heptuplication), but there are also complex patterns such as localized shattering, which resembles DNA damage by radiation. Gene conversions are identified, including one between hemoglobin gamma genes. This study demonstrates a way to find intricate rearrangements with any number of duplications, deletions, and repositionings. It demonstrates a probability-based method to resolve ambiguous rearrangements involving highly similar sequences, as occurs in gene conversion. We present a catalog of local rearrangements in one human cell line, and show which rearrangement patterns occur.


September 22, 2019

Genetic separation of Listeria monocytogenes causing central nervous system infections in animals.

Listeria monocytogenes is a foodborne pathogen that causes abortion, septicemia, gastroenteritis and central nervous system (CNS) infections in ruminants and humans. L. monocytogenes strains mainly belong to two distinct phylogenetic groups, named lineages I and II. In general, clinical cases in humans and animals, in particular CNS infections, are caused by lineage I strains, while most of the environmental and food strains belong to lineage II. Little is known about why lineage I is more virulent than lineage II, even though various molecular factors and mechanisms associated with pathogenesis are known. In this study, we have used a variety of whole genome sequence analyses and comparative genomic tools in order to find characteristics that distinguish lineage I from lineage II strains and CNS infection strains from non-CNS strains. We analyzed 225 strains and identified single nucleotide variants between lineages I and II, as well as differences in the gene content. Using a novel approach based on Reads Per Kilobase per Million Mapped (RPKM), we identified 167 genes predominantly absent in lineage II but present in lineage I. These genes are mostly encoding for membrane-associated proteins. Additionally, we found 77 genes that are largely absent in the non-CNS associated strains, while 39 genes are especially lacking in our defined “non-clinical” group. Based on the RPKM analysis and the metadata linked to the L. monocytogenes strains, we identified 6 genes potentially associated with CNS cases, which include a transcriptional regulator, an ABC transporter and a non-coding RNA. Although there is not a clear separation between pathogenic and non-pathogenic strains based on phylogenetic lineages, the presence of the genes identified in our study reveals potential pathogenesis traits in ruminant L. monocytogenes strains. Ultimately, the differences that we have found in our study will help steer future studies in understanding the virulence mechanisms of the most pathogenic L. monocytogenes strains.


September 22, 2019

Anisogamy evolved with a reduced sex-determining region in volvocine green algae

Male and female gametes differing in size—anisogamy—emerged independently from isogamous ancestors in various eukaryotic lineages, although genetic bases of this emergence are still unknown. Volvocine green algae are a model lineage for investigating the transition from isogamy to anisogamy. Here we focus on two closely related volvocine genera that bracket this transition—isogamous Yamagishiella and anisogamous Eudorina. We generated de novo nuclear genome assemblies of both sexes of Yamagishiella and Eudorina to identify the dimorphic sex-determining chromosomal region or mating-type locus (MT) from each. In contrast to the large (>1?Mb) and complex MT of oogamous Volvox, Yamagishiella and Eudorina MT are smaller (7–268?kb) and simpler with only two sex-limited genes—the minus/male-limited MID and the plus/female-limited FUS1. No prominently dimorphic gametologs were identified in either species. Thus, the first step to anisogamy in volvocine algae presumably occurred without an increase in MT size and complexity.


September 22, 2019

A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line.

Plasmodium knowlesi, a common parasite of macaques, is recognised as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P. knowlesi infection in humans. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.