X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Optical and physical mapping with local finishing enables megabase-scale resolution of agronomically important regions in the wheat genome.

Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome.Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value…

Read More »

Sunday, September 22, 2019

A gene-rich fraction analysis of the Passiflora edulis genome reveals highly conserved microsyntenic regions with two related Malpighiales species.

Passiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis. To fill in this gap in our knowledge, a genomic library was built, and now completely sequenced over 100 large-inserts. Sequencing data were assembled from long sequence reads, and structural sequence annotation resulted in the prediction of about 1,900 genes, providing data for subsequent functional analysis. The richness of repetitive elements was also evaluated. Microsyntenic regions of P. edulis common to Populus trichocarpa and Manihot esculenta,…

Read More »

Sunday, September 22, 2019

Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies.

Brassica rapa comprises several important cultivated vegetables and oil crops. Current reference genome assemblies of Brassica rapa are quite fragmented and not highly contiguous, thereby limiting extensive genetic and genomic analyses. Here, we report an improved assembly of the B. rapa genome (v3.0) using single-molecule sequencing, optical mapping, and chromosome conformation capture technologies (Hi-C). Relative to the previous reference genomes, our assembly features a contig N50 size of 1.45?Mb, representing a ~30-fold improvement. We also identified a new event that occurred in the B. rapa genome ~1.2 million years ago, when a long terminal repeat retrotransposon (LTR-RT) expanded. Further analysis…

Read More »

Sunday, September 22, 2019

PacBio-based mitochondrial genome assembly of Leucaena trichandra (Leguminosae) and an intrageneric assessment of mitochondrial RNA editing.

Reconstructions of vascular plant mitochondrial genomes (mt-genomes) are notoriously complicated by rampant recombination that has resulted in comparatively few plant mt-genomes being available. The dearth of plant mitochondrial resources has limited our understanding of mt-genome structural diversity, complex patterns of RNA editing, and the origins of novel mt-genome elements. Here, we use an efficient long read (PacBio) iterative assembly pipeline to generate mt-genome assemblies for Leucaena trichandra (Leguminosae: Caesalpinioideae: mimosoid clade), providing the first assessment of non-papilionoid legume mt-genome content and structure to date. The efficiency of the assembly approach facilitated the exploration of alternative structures that are common place…

Read More »

Sunday, September 22, 2019

Draft genome sequence of wild Prunus yedoensis reveals massive inter-specific hybridization between sympatric flowering cherries.

Hybridization is an important evolutionary process that results in increased plant diversity. Flowering Prunus includes popular cherry species that are appreciated worldwide for their flowers. The ornamental characteristics were acquired both naturally and through artificially hybridizing species with heterozygous genomes. Therefore, the genome of hybrid flowering Prunus presents important challenges both in plant genomics and evolutionary biology.We use long reads to sequence and analyze the highly heterozygous genome of wild Prunus yedoensis. The genome assembly covers >?93% of the gene space; annotation identified 41,294 protein-coding genes. Comparative analysis of the genome with 16 accessions of six related taxa shows that…

Read More »

Sunday, September 22, 2019

Genomic approaches for studying crop evolution.

Understanding how crop plants evolved from their wild relatives and spread around the world can inform about the origins of agriculture. Here, we review how the rapid development of genomic resources and tools has made it possible to conduct genetic mapping and population genetic studies to unravel the molecular underpinnings of domestication and crop evolution in diverse crop species. We propose three future avenues for the study of crop evolution: establishment of high-quality reference genomes for crops and their wild relatives; genomic characterization of germplasm collections; and the adoption of novel methodologies such as archaeogenetics, epigenomics, and genome editing.

Read More »

Sunday, September 22, 2019

The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly.

Arctic charr have a circumpolar distribution, persevere under extreme environmental conditions, and reach ages unknown to most other salmonids. The Salvelinus genus is primarily composed of species with genomes that are structured more like the ancestral salmonid genome than most Oncorhynchus and Salmo species of sister genera. It is thought that this aspect of the genome may be important for local adaptation (due to increased recombination) and anadromy (the migration of fish from saltwater to freshwater). In this study, we describe the generation of a new genetic map, the sequencing and assembly of the Arctic charr genome (GenBank accession: GCF_002910315.2)…

Read More »

Sunday, September 22, 2019

Extraordinary genome instability and widespread chromosome rearrangements during vegetative growth

The haploid genome of the pathogenic fungus Zymoseptoria tritici is contained on “core” and “accessory” chromosomes. While 13 core chromosomes are found in all strains, as many as eight accessory chromosomes show presence/absence variation and rearrangements among field isolates. The factors influencing these presence/absence polymorphisms are so far unknown. We investigated chromosome stability using experimental evolution, karyotyping, and genome sequencing. We report extremely high and variable rates of accessory chromosome loss during mitotic propagation in vitro and in planta Spontaneous chromosome loss was observed in 2 to >50% of cells during 4 weeks of incubation. Similar rates of chromosome loss…

Read More »

Sunday, September 22, 2019

Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity.

Chagas disease is a complex illness caused by the protozoan Trypanosoma cruzi displaying highly diverse clinical outcomes. In this sense, the genome sequence elucidation and comparison between strains may lead to disease understanding. Here, two new T. cruzi strains, have been sequenced, Y using Illumina and Bug2148 using PacBio, assembled, analyzed and compared with the T. cruzi annotated genomes available to date. The assembly stats from the new sequences show effective improvement of T. cruzi genome over the actual ones. Such as, the largest contig assembled (1.3?Mb in Bug2148) in de novo attempts and the highest mean assembly coverage (71X…

Read More »

Sunday, September 22, 2019

Genome-wide researches and applications on Dendrobium.

This review summarizes current knowledge of chromosome characterization, genetic mapping, genomic sequencing, quality formation, floral transition, propagation, and identification in Dendrobium. The widely distributed Dendrobium has been studied for a long history, due to its important economic values in both medicine and ornamental. In recent years, some species of Dendrobium and other orchids had been reported on genomic sequences, using the next-generation sequencing technology. And the chloroplast genomes of many Dendrobium species were also revealed. The chromosomes of most Dendrobium species belong to mini-chromosomes, and showed 2n?=?38. Only a few of genetic studies were reported in Dendrobium. After revealing of…

Read More »

Sunday, September 22, 2019

Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B.

Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and…

Read More »

Sunday, September 22, 2019

Correcting palindromes in long reads after whole-genome amplification.

Next-generation sequencing requires sufficient DNA to be available. If limited, whole-genome amplification is applied to generate additional amounts of DNA. Such amplification often results in many chimeric DNA fragments, in particular artificial palindromic sequences, which limit the usefulness of long sequencing reads.Here, we present Pacasus, a tool for correcting such errors. Two datasets show that it markedly improves read mapping and de novo assembly, yielding results similar to these that would be obtained with non-amplified DNA.With Pacasus long-read technologies become available for sequencing targets with very small amounts of DNA, such as single cells or even single chromosomes.

Read More »

Sunday, September 22, 2019

3D molecular cytology of Hop (Humulus lupulus) meiotic chromosomes reveals non-disomic pairing and segregation, aneuploidy, and genomic structural variation.

Hop (Humulus lupulus L.) is an important crop worldwide, known as the main flavoring ingredient in beer. The diversifying brewing industry demands variation in flavors, superior process properties, and sustainable agronomics, which are the focus of advanced molecular breeding efforts in hops. Hop breeders have been limited in their ability to create strains with desirable traits, however, because of the unusual and unpredictable inheritance patterns and associated non-Mendelian genetic marker segregation. Cytogenetic analysis of meiotic chromosome behavior has also revealed conspicuous and prevalent occurrences of multiple, atypical, non-disomic chromosome complexes, including those involving autosomes in late prophase. To explore the…

Read More »

Sunday, September 22, 2019

The impact of genome evolution on the allotetraploid Nicotiana rustica – an intriguing story of enhanced alkaloid production.

Nicotiana rustica (Aztec tobacco), like common tobacco (Nicotiana tabacum), is an allotetraploid formed through a recent hybridization event; however, it originated from completely different progenitor species. Here, we report the comparative genome analysis of wild type N. rustica (5 Gb; 2n?=?4x?=?48) with its three putative diploid progenitors (2.3-3 Gb; 2n?=?2x =24), Nicotiana undulata, Nicotiana paniculata and Nicotiana knightiana.In total, 41% of N. rustica genome originated from the paternal donor (N. undulata), while 59% originated from the maternal donor (N. paniculata/N. knightiana). Chloroplast genome and gene analyses indicated that N. knightiana is more closely related to N. rustica than N. paniculata.…

Read More »

Sunday, September 22, 2019

Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from…

Read More »

1 7 8 9 10

Subscribe for blog updates:

Archives