April 21, 2020  |  

Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli.

Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E.?coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.


April 21, 2020  |  

Molecular Characterization of a Multidrug-Resistant Klebsiella pneumoniae Strain R46 Isolated from a Rabbit

To investigate the mechanisms of multiple resistance and the horizontal transfer of resistance genes in animal pathogens, we characterized the molecular structures of the resistance gene-related sequences in a multidrug-resistant Klebsiella pneumoniae strain R46 isolated from a rabbit. Molecular cloning was performed to clone the resistance genes, and minimum inhibitory concentrations (MICs) were measured to determine the resistance characteristics of the cloned genes and related strains. A conjugation experiment was conducted to assess the transferability of the resistance plasmids. Sequencing and comparative genomic methods were used to analyze the structures of the resistance gene-related sequences. The K. pneumoniae R46 genome consisted of a chromosome and three resistance plasmids named pR46-27, pR46-42, and pR46-270, respectively. The whole genome encoded 34 antibiotic resistance genes including a newly identified chromosome-encoded florfenicol resistance gene named mdfA2. pR46-270, besides encoding 26 antibiotic resistance genes, carried four clusters of heavy metal resistance genes and several virulence-related genes or gene clusters. The plasmid-encoded resistance genes were mostly associated with mobile genetic elements. The plasmid with the most similarity to the floR gene-harboring plasmid pR46-27 was pCTXM-2271, a plasmid from Escherichia coli. The results of this work demonstrated that the plasmids with multidrug resistance genes were present in animal-derived bacteria and more florfenicol resistance genes such as mdfA2 could be present in bacterial populations. The resistance genes encoded on the plasmids may spread between the bacteria of different species or genera and cause the resistance dissemination.


April 21, 2020  |  

The Complete Genome of the Atypical Enteropathogenic Escherichia coli Archetype Isolate E110019 Highlights a Role for Plasmids in Dissemination of the Type III Secreted Effector EspT.

Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Dual Role of gnaA in Antibiotic Resistance and Virulence in Acinetobacter baumannii.

Acinetobacter baumannii is an important Gram-negative pathogen in hospital-related infections. However, treatment options for A. baumannii infections have become limited due to multidrug resistance. Bacterial virulence is often associated with capsule genes found in the K locus, many of which are essential for biosynthesis of the bacterial envelope. However, the roles of other genes in the K locus remain largely unknown. From an in vitro evolution experiment, we obtained an isolate of the virulent and multidrug-resistant A. baumannii strain MDR-ZJ06, called MDR-ZJ06M, which has an insertion by the ISAba16 transposon in gnaA (encoding UDP-N-acetylglucosamine C-6 dehydrogenase), a gene found in the K locus. The isolate showed an increased resistance toward tigecycline, whereas the MIC decreased in the case of carbapenems, cephalosporins, colistin, and minocycline. By using knockout and complementation experiments, we demonstrated that gnaA is important for the synthesis of lipooligosaccharide and capsular polysaccharide and that disruption of the gene affects the morphology, drug susceptibility, and virulence of the pathogen.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli.

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.Copyright © 2019 Mahérault et al.


April 21, 2020  |  

Salmonella Genomic Island 3 Is an Integrative and Conjugative Element and Contributes to Copper and Arsenic Tolerance of Salmonella enterica.

Salmonella genomic island 3 (SGI3) was first described as a chromosomal island in Salmonella 4,[5],12:i:-, a monophasic variant of Salmonella enterica subsp. enterica serovar Typhimurium. The SGI3 DNA sequence detected from Salmonella 4,[5],12:i:- isolated in Japan was identical to that of a previously reported one across entire length of 81?kb. SGI3 consists of 86 open reading frames, including a copper homeostasis and silver resistance island (CHASRI) and an arsenic tolerance operon, in addition to genes related to conjugative transfer and DNA replication or partitioning, suggesting that the island is a mobile genetic element. We successfully selected transconjugants that acquired SGI3 after filter-mating experiments using the S. enterica serovars Typhimurium, Heidelberg, Hadar, Newport, Cerro, and Thompson as recipients. Southern blot analysis using I-CeuI-digested genomic DNA demonstrated that SGI3 was integrated into a chromosomal fragment of the transconjugants. PCR and sequencing analysis demonstrated that SGI3 was inserted into the 3′ end of the tRNA genes pheV or pheR The length of the target site was 52 or 55?bp, and a 55-bp attI sequence indicating generation of the circular form of SGI3 was also detected. The transconjugants had a higher MIC against CuSO4 compared to the recipient strains under anaerobic conditions. Tolerance was defined by the cus gene cluster in the CHASRI. The transconjugants also had distinctly higher MICs against Na2HAsO4 compared to recipient strains under aerobic conditions. These findings clearly demonstrate that SGI3 is an integrative and conjugative element and contributes to the copper and arsenic tolerance of S. enterica.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Spreading Patterns of NDM-Producing Enterobacteriaceae in Clinical and Environmental Settings in Yangon, Myanmar.

The spread of carbapenemase-producing Enterobacteriaceae (CPE), contributing to widespread carbapenem resistance, has become a global concern. However, the specific dissemination patterns of carbapenemase genes have not been intensively investigated in developing countries, including Myanmar, where NDM-type carbapenemases are spreading in clinical settings. In the present study, we phenotypically and genetically characterized 91 CPE isolates obtained from clinical (n = 77) and environmental (n = 14) samples in Yangon, Myanmar. We determined the dissemination of plasmids harboring genes encoding NDM-1 and its variants using whole-genome sequencing and plasmid analysis. IncFII plasmids harboring blaNDM-5 and IncX3 plasmids harboring blaNDM-4 or blaNDM-7 were the most prevalent plasmid types identified among the isolates. The IncFII plasmids were predominantly carried by clinical isolates of Escherichia coli, and their clonal expansion was observed within the same ward of a hospital. In contrast, the IncX3 plasmids were found in phylogenetically divergent isolates from clinical and environmental samples classified into nine species, suggesting widespread dissemination of plasmids via horizontal transfer. Half of the environmental isolates were found to possess IncX3 plasmids, and this type of plasmid was confirmed to transfer more effectively to recipient organisms at a relatively low temperature (25°C) compared to the IncFII plasmid. Moreover, various other plasmid types were identified harboring blaNDM-1, including IncFIB, IncFII, IncL/M, and IncA/C2, among clinical isolates of Klebsiella pneumoniae or Enterobacter cloacae complex. Overall, our results highlight three distinct patterns of the dissemination of blaNDM-harboring plasmids among CPE isolates in Myanmar, contributing to a better understanding of their molecular epidemiology and dissemination in a setting of endemicity.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Complete Sequence of a Novel Multidrug-Resistant Pseudomonas putida Strain Carrying Two Copies of qnrVC6.

This study aimed at identification and characterization of a novel multidrug-resistant Pseudomonas putida strain Guangzhou-Ppu420 carrying two copies of qnrVC6 isolated from a hospital in Guangzhou, China, in 2012. Antimicrobial susceptibility was tested by Vitek2™ Automated Susceptibility System and Etest™ strips, and whole-genome sequencing facilitated analysis of its multidrug resistance. The genome has a length of 6,031,212?bp and an average G?+?C content of 62.01%. A total of 5,421 open reading frames were identified, including eight 5S rRNA, seven 16S rRNA, and seven 23S rRNA, and 76 tRNA genes. Importantly, two copies of qnrVC6 gene with three ISCR1 around, a blaVIM-2 carrying integron In528, a novel gcu173 carrying integron In1348, and six antibiotic resistance genes were identified. This is the first identification of two copies of the qnrVC6 gene in a single P. putida isolate and a class 1 integron In1348.


April 21, 2020  |  

Genetic variation in the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain.

Bacteria harboring conjugative plasmids have the potential for spreading antibiotic resistance through horizontal gene transfer. It is described that the selection and dissemination of antibiotic resistance is enhanced by stressors, like metals or antibiotics, which can occur as environmental contaminants. This study aimed at unveiling the composition of the conjugative plasmidome of a hospital effluent multidrug resistant Escherichia coli strain (H1FC54) under different mating conditions. To meet this objective, plasmid pulsed field gel electrophoresis, optical mapping analyses and DNA sequencing were used in combination with phenotype analysis. Strain H1FC54 was observed to harbor five plasmids, three of which were conjugative and two of these, pH1FC54_330 and pH1FC54_140, contained metal and antibiotic resistance genes. Transconjugants obtained in the absence or presence of tellurite (0.5?µM or 5?µM), arsenite (0.5?µM, 5?µM or 15?µM) or ceftazidime (10?mg/L) and selected in the presence of sodium azide (100?mg/L) and tetracycline (16?mg/L) presented distinct phenotypes, associated with the acquisition of different plasmid combinations, including two co-integrate plasmids, of 310 kbp and 517 kbp. The variable composition of the conjugative plasmidome, the formation of co-integrates during conjugation, as well as the transfer of non-transferable plasmids via co-integration, and the possible association between antibiotic, arsenite and tellurite tolerance was demonstrated. These evidences bring interesting insights into the comprehension of the molecular and physiological mechanisms that underlie antibiotic resistance propagation in the environment. Copyright © 2019 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing Enterobacter asburiae isolate from a patient with wound infection.

The aim of this study was to investigate the characteristics and complete genome sequence of an IMP-8, CTX-M-14, CTX-M-3 and QnrS1 co-producing multidrug-resistant Enterobacter asburiae isolate (EN3600) from a patient with wound infection.Species identification was confirmed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Carbapenemase genes were identified by PCR and Sanger sequencing. The complete genome sequence of E. asburiae EN3600 was obtained using a PacBio RS II platform. Genome annotation was done by Rapid Annotation using Subsystem Technology (RAST) server. Acquired antimicrobial resistance genes (ARGs) and plasmid replicons were detected using ResFinder 2.1 and PlasmidFinder 1.3, respectively.The genome of E. asburiae EN3600 consists of a 4.8-Mbp chromosome and five plasmids. The annotated genome contains various ARGs conferring resistance to aminoglycosides, ß-lactams, fluoroquinolones, fosfomycin, macrolides, phenicols, rifampicin and sulfonamides. In addition, plasmids of incompatibility (Inc) groups IncHI2A, IncFIB(pECLA), IncFIB(pQil) and IncP1 were identified. The genes blaIMP-8, blaCTX-M-14 and blaCTX-M-3 were located on different plasmids. The blaIMP-8 gene was carried by an 86-kb IncFIB(pQil) plasmid. The blaCTX-M-3 and qnrS1 genes were co-harboured by an IncP1 plasmid. In addition, blaCTX-M-14 was associated with blaTEM-1B, blaOXA-1, catB3 and sul1 genes in a 116-kb non-typeable plasmid.To our knowledge, this is the first complete genome sequence of an E. asburiae isolate co-producing IMP-8, CTX-M-14, CTX-M-3 and QnrS1. This genome may facilitate the understanding of the resistome, pathogenesis and genomic features of Enterobacter cloacae complex (ECC) and will provide valuable information for accurate identification of ECC.Copyright © 2019 International Society for Antimicrobial Chemotherapy. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential.

Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824?bp circular chromosome and a plasmid of 371,027?bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The molecular cold adaptation analysis in comparison with the genome of 15 mesophilic Pseudomonas species revealed functional insight into the strategies of cold adaptation. The genomic data also revealed the presence of industrially important enzymes.Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota.

The human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs), which are ancient components of immune defence. Despite its medical importance, it has remained unclear whether AMP resistance genes in the gut microbiome are available for genetic exchange between bacterial species. Here, we show that AMP resistance and antibiotic resistance genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance genes. Second, gut microbiota culturing and functional metagenomics have revealed that AMP resistance genes originating from phylogenetically distant bacteria have only a limited potential to confer resistance in Escherichia coli, an intrinsically susceptible species. Taken together, functional compatibility with the new bacterial host emerges as a key factor limiting the genetic exchange of AMP resistance genes. Finally, our results suggest that AMPs induce highly specific changes in the composition of the human microbiota, with implications for disease risks.


April 21, 2020  |  

Genomic investigation of Staphylococcus aureus recovered from Gambian women and newborns following an oral dose of intra-partum azithromycin.

Oral azithromycin given during labour reduces carriage of bacteria responsible for neonatal sepsis, including Staphylococcus aureus. However, there is concern that this may promote drug resistance.Here, we combine genomic and epidemiological data on S. aureus isolated from mothers and babies in a randomized intra-partum azithromycin trial (PregnAnZI) to describe bacterial population dynamics and resistance mechanisms.Participants from both arms of the trial, who carried S. aureus in day 3 and day 28 samples post-intervention, were included. Sixty-six S. aureus isolates (from 7 mothers and 10 babies) underwent comparative genome analyses and the data were then combined with epidemiological data. Trial registration (main trial): ClinicalTrials.gov Identifier NCT01800942.Seven S. aureus STs were identified, with ST5 dominant (n?=?40, 61.0%), followed by ST15 (n?=?11, 17.0%). ST5 predominated in the placebo arm (73.0% versus 49.0%, P?=?0.039) and ST15 in the azithromycin arm (27.0% versus 6.0%, P?=?0.022). In azithromycin-resistant isolates, msr(A) was the main macrolide resistance gene (n?=?36, 80%). Ten study participants, from both trial arms, acquired azithromycin-resistant S. aureus after initially harbouring a susceptible isolate. In nine (90%) of these cases, the acquired clone was an msr(A)-containing ST5 S. aureus. Long-read sequencing demonstrated that in ST5, msr(A) was found on an MDR plasmid.Our data reveal in this Gambian population the presence of a dominant clone of S. aureus harbouring plasmid-encoded azithromycin resistance, which was acquired by participants in both arms of the study. Understanding these resistance dynamics is crucial to defining the public health drug resistance impacts of azithromycin prophylaxis given during labour in Africa. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.


April 21, 2020  |  

One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen.

The Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is an aquatic pathogen which causes furunculosis to salmonids, especially in fish farms. The emergence of strains of this bacterium exhibiting antibiotic resistance is increasing, limiting the effectiveness of antibiotherapy as a treatment against this worldwide disease. In the present study, we discovered an isolate of A. salmonicida subsp. salmonicida that harbors two novel plasmids variants carrying antibiotic resistance genes. The use of long-read sequencing (PacBio) allowed us to fully characterize those variants, named pAsa5-3432 and pRAS3-3432, which both differ from their classic counterpart through their content in mobile genetic elements. The plasmid pAsa5-3432 carries a new multidrug region composed of multiple mobile genetic elements, including a Class 1 integron similar to an integrated element of Salmonella enterica. With this new region, probably acquired through plasmid recombination, pAsa5-3432 is the first reported plasmid of this bacterium that bears both an essential virulence factor (the type three secretion system) and multiple antibiotic resistance genes. As for pRAS3-3432, compared to the classic pRAS3, it carries a new mobile element that has only been identified in Chlamydia suis. Hence, with the identification of those two novel plasmids harboring mobile genetic elements that are normally encountered in other bacterial species, the present study puts emphasis on the important impact of mobile genetic elements in the genomic plasticity of A. salmonicida subsp. salmonicida and suggests that this aquatic bacterium could be an important reservoir of antibiotic resistance genes that can be exchanged with other bacteria, including human and animal pathogens. Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020  |  

Genetic characterization and potential molecular dissemination mechanism of tet(31) gene in Aeromonas caviae from an oxytetracycline wastewater treatment system.

Recently, the rarely reported tet(31) tetracycline resistance determinant was commonly found in Aeromonas salmonicida, Gallibacterium anatis, and Oblitimonas alkaliphila isolated from farming animals and related environment. However, its distribution in other bacteria and potential molecular dissemination mechanism in environment are still unknown. The purpose of this study was to investigate the potential mechanism underlying dissemination of tet(31) by analysing the tet(31)-carrying fragments in A. caviae strains isolated from an aerobic biofilm reactor treating oxytetracycline bearing wastewater. Twenty-three A. caviae strains were screened for the tet(31) gene by polymerase chain reaction (PCR). Three strains (two harbouring tet(31), one not) were subjected to whole genome sequencing using the PacBio RSII platform. Seventeen A. caviae strains carried the tet(31) gene and exhibited high resistance levels to oxytetracycline with minimum inhibitory concentrations (MICs) ranging from 256 to 512?mg/L. tet(31) was comprised of the transposon Tn6432 on the chromosome of A. caviae, and Tn6432 was also found in 15 additional tet(31)-positive A. caviae isolates by PCR. More important, Tn6432 was located on an integrative conjugative element (ICE)-like element, which could mediate the dissemination of the tet(31)-carrying transposon Tn6432 between bacteria. Comparative analysis demonstrated that Tn6432 homologs with the structure ISCR2-?phzF-tetR(31)-tet(31)-?glmM-sul2 were also carried by A. salmonicida, G. anatis, and O. alkaliphila, suggesting that this transposon can be transferred between species and even genera. This work provides the first report on the identification of the tet(31) gene in A. caviae, and will be helpful in exploring the dissemination mechanisms of tet(31) in water environment.Copyright © 2018. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.