Menu
April 21, 2020  |  

The bracteatus pineapple genome and domestication of clonally propagated crops.

Domestication of clonally propagated crops such as pineapple from South America was hypothesized to be a ‘one-step operation’. We sequenced the genome of Ananas comosus var. bracteatus CB5 and assembled 513?Mb into 25 chromosomes with 29,412 genes. Comparison of the genomes of CB5, F153 and MD2 elucidated the genomic basis of fiber production, color formation, sugar accumulation and fruit maturation. We also resequenced 89 Ananas genomes. Cultivars ‘Smooth Cayenne’ and ‘Queen’ exhibited ancient and recent admixture, while ‘Singapore Spanish’ supported a one-step operation of domestication. We identified 25 selective sweeps, including a strong sweep containing a pair of tandemly duplicated bromelain inhibitors. Four candidate genes for self-incompatibility were linked in F153, but were not functional in self-compatible CB5. Our findings support the coexistence of sexual recombination and a one-step operation in the domestication of clonally propagated crops. This work guides the exploration of sexual and asexual domestication trajectories in other clonally propagated crops.


April 21, 2020  |  

Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.

Chlorella vulgaris is a fast-growing fresh-water microalga cultivated at the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light-HL versus low light -LL) enabled to identify 10,724 nuclear genes, coding for 11,082 transcripts. Moreover 121 and 48 genes were respectively found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed peculiar features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL vs HL provide insights into the molecular basis for metabolic rearrangement in HL vs. LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway can be predicted and its upregulation upon HL exposure is observed, consistent with increased lipid amount under HL. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Whole-genome sequence of Arthrinium phaeospermum, a globally distributed pathogenic fungus.

Arthrinium phaeospermum (Corda) M.B. Ellis is a globally distributed pathogenic fungus with a wide host range; its hosts include not only plants, but also humans and animals. This study aimed to develop genomic resources for A. phaeospermum to provide solid data and a theoretical basis for further studies of its pathogenesis, transcriptomics, proteomics, metabolomics and RNA genomics. The genome was obtained from the mycelia of the strain AP-Z13 using a combination of analyses with the high-throughput Illumina HiSeq 4000 system and PacBio RSII LongRead sequencing platform. Functional annotation was performed by BLASTing protein sequences against those in different publicly available databases to obtain their corresponding annotations. The genome is 48.45?Mb in size, with an N90 scaffold size of 1,931,147?bp, and encodes 19,836 putative predicted genes. This is the first report of the genome-scale assembly and annotation for A. phaeospermum, the first species in the genus Arthrinium to be subjected to whole genome sequencing. Copyright © 2019 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae.

Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi. © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.


April 21, 2020  |  

Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass.

Orchardgrass (Dactylis glomerata L.) is an important forage grass for cultivating livestock worldwide. Here, we report an ~1.84-Gb chromosome-scale diploid genome assembly of orchardgrass, with a contig N50 of 0.93 Mb, a scaffold N50 of 6.08 Mb and a super-scaffold N50 of 252.52 Mb, which is the first chromosome-scale assembled genome of a cool-season forage grass. The genome includes 40 088 protein-coding genes, and 69% of the assembled sequences are transposable elements, with long terminal repeats (LTRs) being the most abundant. The LTRretrotransposons may have been activated and expanded in the grass genome in response to environmental changes during the Pleistocene between 0 and 1 million years ago. Phylogenetic analysis reveals that orchardgrass diverged after rice but before three Triticeae species, and evolutionarily conserved chromosomes were detected by analysing ancient chromosome rearrangements in these grass species. We also resequenced the whole genome of 76 orchardgrass accessions and found that germplasm from Northern Europe and East Asia clustered together, likely due to the exchange of plants along the ‘Silk Road’ or other ancient trade routes connecting the East and West. Last, a combined transcriptome, quantitative genetic and bulk segregant analysis provided insights into the genetic network regulating flowering time in orchardgrass and revealed four main candidate genes controlling this trait. This chromosome-scale genome and the online database of orchardgrass developed here will facilitate the discovery of genes controlling agronomically important traits, stimulate genetic improvement of and functional genetic research on orchardgrass and provide comparative genetic resources for other forage grasses. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Updated assembly resource of Phytophthora ramorum Pr102 isolate incorporating long reads from PacBio sequencing.

The NA1 clonal lineage of Phytophthora ramorum is responsible for Sudden Oak Death, an epidemic that has devastated California’s coastal forest ecosystems. An NA1 isolate Pr102 derived from coast live oak in California was previously sequenced and reported with 65 Mb assembly containing 12 Mb gaps in 2576 scaffolds. Here we report an improved 70 Mb genome in 1512 scaffolds with 6752 bp gaps after incorporating PacBio P5-C3 longreads. This assembly contains 19494 gene models (average gene length 2515 bp) compared to 16134 genes (average gene length of 1673 bp) in the previous version. We predicted 29 new RXLRs and 76 new paralogs of a total 392 RXLRs from this assembly. We predicted 35 CRNs compared to 19 in earlier version with six paralogs. Our lncRNAs prediction identified 255 candidates. This new resource will be invaluable for future evolution studies on the invasive plant pathogen.


April 21, 2020  |  

Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants.

Horizontal gene transfer (HGT), the movement and genomic integration of DNA across species boundaries, is commonly associated with bacteria and other microorganisms, but functional HGT (fHGT) is increasingly being recognized in heterotrophic parasitic plants that obtain their nutrients and water from their host plants through direct haustorial feeding. Here, in the holoparasitic stem parasite Cuscuta, we identify 108?transcribed and probably functional HGT events in Cuscuta campestris and related species, plus 42?additional regions with host-derived transposon, pseudogene and non-coding sequences. Surprisingly, 18?Cuscuta fHGTs were acquired from the same gene families by independent HGT events in Orobanchaceae parasites, and the majority are highly expressed in the haustorial feeding structures in both lineages. Convergent retention and expression of HGT sequences suggests an adaptive role for specific additional genes in parasite biology. Between 16 and 20 of the transcribed HGT events are inferred as ancestral in Cuscuta based on transcriptome sequences from species across the phylogenetic range of the genus, implicating fHGT in the successful radiation of Cuscuta parasites. Genome sequencing of C. campestris supports transfer of genomic DNA-rather than retroprocessed RNA-as the mechanism of fHGT. Many of the C. campestris genes horizontally acquired are also frequent sources of 24-nucleotide small RNAs that are typically associated with RNA-directed DNA methylation. One HGT encoding a leucine-rich repeat protein kinase overlaps with a microRNA that has been shown to regulate host gene expression, suggesting that HGT-derived parasite small RNAs may function in the parasite-host interaction. This study enriches our understanding of HGT by describing a parasite-host system with unprecedented gene exchange that points to convergent evolution of HGT events and the functional importance of horizontally transferred coding and non-coding sequences.


April 21, 2020  |  

Antibiotic susceptibility of plant-derived lactic acid bacteria conferring health benefits to human.

Lactic acid bacteria (LAB) confer health benefits to human when administered orally. We have recently isolated several species of LAB strains from plant sources, such as fruits, vegetables, flowers, and medicinal plants. Since antibiotics used to treat bacterial infection diseases induce the emergence of drug-resistant bacteria in intestinal microflora, it is important to evaluate the susceptibility of LAB strains to antibiotics to ensure the safety and security of processed foods. The aim of the present study is to determine the minimum inhibitory concentration (MIC) of antibiotics against several plant-derived LAB strains. When aminoglycoside antibiotics, such as streptomycin (SM), kanamycin (KM), and gentamicin (GM), were evaluated using LAB susceptibility test medium (LSM), the MIC was higher than when using Mueller-Hinton (MH) medium. Etest, which is an antibiotic susceptibility assay method consisting of a predefined gradient of antibiotic concentrations on a plastic strip, is used to determine the MIC of antibiotics world-wide. In the present study, we demonstrated that Etest was particularly valuable while testing LAB strains. We also show that the low susceptibility of the plant-derived LAB strains against each antibiotic tested is due to intrinsic resistance and not acquired resistance. This finding is based on the whole-genome sequence information reflecting the horizontal spread of the drug-resistance genes in the LAB strains.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


April 21, 2020  |  

The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants

Most angiosperms bear hermaphroditic flowers, but a few species have evolved outcrossing strategies, such as dioecy, the presence of separate male and female individuals. We previously investigated the mechanisms underlying dioecy in diploid persimmon (D. lotus) and found that male flowers are specified by repression of the autosomal gene MeGI by its paralog, the Y-encoded pseudo-gene OGI. This mechanism is thought to be lineage-specific, but its evolutionary path remains unknown. Here, we developed a full draft of the diploid persimmon genome (D. lotus), which revealed a lineage-specific genome-wide paleoduplication event. Together with a subsequent persimmon-specific duplication(s), these events resulted in the presence of three paralogs, MeGI, OGI and newly identified Sister of MeGI (SiMeGI), from the single original gene. Evolutionary analysis suggested that MeGI underwent adaptive evolution after the paleoduplication event. Transformation of tobacco plants with MeGI and SiMeGI revealed that MeGI specifically acquired a new function as a repressor of male organ development, while SiMeGI presumably maintained the original function. Later, local duplication spawned MeGI’s regulator OGI, completing the path leading to dioecy. These findings exemplify how duplication events can provide flexible genetic material available to help respond to varying environments and provide interesting parallels for our understanding of the mechanisms underlying the transition into dieocy in plants.


April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.


April 21, 2020  |  

Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline

Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and allow for annotation of TEs. There are numerous methods for each class of elements with unknown relative performance metrics. We benchmarked existing programs based on a curated library of rice TEs. Using the most robust programs, we created a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a condensed TE library for annotations of structurally intact and fragmented elements. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.List of abbreviationsTETransposable ElementsLTRLong Terminal RepeatLINELong Interspersed Nuclear ElementSINEShort Interspersed Nuclear ElementMITEMiniature Inverted Transposable ElementTIRTerminal Inverted RepeatTSDTarget Site DuplicationTPTrue PositivesFPFalse PositivesTNTrue NegativeFNFalse NegativesGRFGeneric Repeat FinderEDTAExtensive de-novo TE Annotator


April 21, 2020  |  

Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing.

For the first time, full-length 16S rRNA sequencing method was applied to disclose the bacterial species and communities of a full-scale wastewater treatment plant using an anaerobic/anoxic/oxic (A/A/O) process in Wuhan, China. The compositions of the bacteria at phylum and class levels in the activated sludge were similar to which revealed by Illumina Miseq sequencing. At genus and species levels, third-generation sequencing showed great merits and accuracy. Typical functional taxa classified to ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), denitrifying bacteria (DB), anaerobic ammonium oxidation bacteria (ANAMMOXB) and polyphosphate-accumulating organisms (PAOs) were presented, which were Nitrosomonas (1.11%), Nitrospira (3.56%), Pseudomonas (3.88%), Planctomycetes (13.80%), Comamonadaceae (1.83%), respectively. Pseudomonas (3.88%) and Nitrospira (3.56%) were the most predominating two genera, mainly containing Pseudomonas extremaustralis (1.69%), Nitrospira defluvii (3.13%), respectively. Bacteria regarding to nitrogen and phosphorus removal at species level were put forward. The predicted functions proved that the A/A/O process was efficient regarding nitrogen and organics removal. Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.


April 21, 2020  |  

Variant Phasing and Haplotypic Expression from Single-molecule Long-read Sequencing in Maize

Haplotype phasing of genetic variants is important for interpretation of the maize genome, population genetic analysis, and functional genomic analysis of allelic activity. Accordingly, accurate methods for phasing full-length isoforms are essential for functional genomics study. In this study, we performed an isoform-level phasing study in maize, using two inbred lines and their reciprocal crosses, based on single-molecule full-length cDNA sequencing. To phase and analyze full-length transcripts between hybrids and parents, we developed a tool called IsoPhase. Using this tool, we validated the majority of SNPs called against matching short read data and identified cases of allele-specific, gene-level, and isoform-level expression. Our results revealed that maize parental and hybrid lines exhibit different splicing activities. After phasing 6,847 genes in two reciprocal hybrids using embryo, endosperm and root tissues, we annotated the SNPs and identified large-effect genes. In addition, based on single-molecule sequencing, we identified parent-of-origin isoforms in maize hybrids, different novel isoforms between maize parent and hybrid lines, and imprinted genes from different tissues. Finally, we characterized variation in cis- and trans-regulatory effects. Our study provides measures of haplotypic expression that could increase power and accuracy in studies of allelic expression.


April 21, 2020  |  

Genome sequence resource for Ilyonectria mors-panacis, causing rusty root rot of Panax notoginseng.

Ilyonectria mors-panacis is a serious disease hampering the production of Panax notoginseng, an important Chinese medicinal herb, widely used for its anti-inflammatory, anti-fatigue, hepato-protective, and coronary heart disease prevention effects. Here, we report the first Illumina-Pacbio hybrid sequenced draft genome assembly of I. mors-panacis strain G3B and its annotation. The availability of this genome sequence not only represents an important tool toward understanding the genetics behind the infection mechanism of I. mors-panacis strain G3B but also will help illuminate the complexities of the taxonomy of this species.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.