Menu
April 21, 2020

Plantibacter flavus, Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens Endophytes Provide Host-Specific Growth Promotion of Arabidopsis thaliana, Basil, Lettuce, and Bok Choy Plants.

A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.Copyright © 2019 American Society for Microbiology.


April 21, 2020

Hybrid Sequencing of Full-Length cDNA Transcripts of the Medicinal Plant Scutellaria baicalensis.

Scutellaria baicalensis is a well-known medicinal plant that produces biologically active flavonoids, such as baicalin, baicalein, and wogonin. Pharmacological studies have shown that these compounds have anti-inflammatory, anti-bacterial, and anti-cancer activities. Therefore, it is of great significance to investigate the genetic information of S. baicalensis, particularly the genes related to the biosynthetic pathways of these compounds. Here, we constructed the full-length transcriptome of S. baicalensis using a hybrid sequencing strategy and acquired 338,136 full-length sequences, accounting for 93.3% of the total reads. After the removal of redundancy and correction with Illumina short reads, 75,785 nonredundant transcripts were generated, among which approximately 98% were annotated with significant hits in the protein databases, and 11,135 sequences were classified as lncRNAs. Differentially expressed gene (DEG) analysis showed that most of the genes related to flavonoid biosynthesis were highly expressed in the roots, consistent with previous reports that the flavonoids were mainly synthesized and accumulated in the roots of S. baicalensis. By constructing unique transcription models, a total of 44,071 alternative splicing (AS) events were identified, with intron retention (IR) accounting for the highest proportion (44.5%). A total of 94 AS events were present in five key genes related to flavonoid biosynthesis, suggesting that AS may play important roles in the regulation of flavonoid biosynthesis in S. baicalensis. This study provided a large number of highly accurate full-length transcripts, which represents a valuable genetic resource for further research of the molecular biology of S. baicalensis, such as the development, breeding, and biosynthesis of active ingredients.


April 21, 2020

Complete Genome Sequence of Achromobacter spanius UQ283, a Soilborne Isolate Exhibiting Plant Growth-Promoting Properties.

Achromobacter spanius UQ283 is a soilborne bacterium found to exhibit plant growth-promoting and disease-suppressing attributes in several plant species. Accordingly, we used long-read sequencing to determine its complete genome sequence. The assembled genome will aid in understanding the multifaceted interactions between plant growth-promoting rhizobacteria, pathogens, and plants. Copyright © 2019 Wass et al.


April 21, 2020

Sequence and Evolutionary Features for the Alternatively Spliced Exons of Eukaryotic Genes.

Alternative splicing of pre-mRNAs is a crucial mechanism for maintaining protein diversity in eukaryotes without requiring a considerable increase of genes in the number. Due to rapid advances in high-throughput sequencing technologies and computational algorithms, it is anticipated that alternative splicing events will be more intensively studied to address different kinds of biological questions. The occurrences of alternative splicing mean that all exons could be classified to be either constitutively or alternatively spliced depending on whether they are virtually included into all mature mRNAs. From an evolutionary point of view, therefore, the alternatively spliced exons would have been associated with distinctive biological characteristics in comparison with constitutively spliced exons. In this paper, we first outline the representative types of alternative splicing events and exon classification, and then review sequence and evolutionary features for the alternatively spliced exons. The main purpose is to facilitate understanding of the biological implications of alternative splicing in eukaryotes. This knowledge is also helpful to establish computational approaches for predicting the splicing pattern of exons.


April 21, 2020

Genome Sequence of a California Isolate of Fusarium oxysporum f. sp. lycopersici Race 3, a Fungus Causing Wilt Disease on Tomato.

Fusarium wilt of tomato, caused by the soilborne fungus Fusarium oxysporum f. sp. lycopersici, is an increasingly important disease of tomato. This paper reports the high-quality draft genome assembly of F. oxysporum f. sp. lycopersici isolate D11 (race 3), which consists of 39 scaffolds with 57,281,978?bp (GC content, 47.5%), an N50 of 4,408,267?bp, a mean read coverage of 99.8×, and 17,682 predicted genes. Copyright © 2019 Henry et al.


April 21, 2020

Genomic Diversity and Recombination among Xylella fastidiosa Subspecies.

Xylella fastidiosa is an economically important bacterial plant pathogen. With insights gained from 72 genomes, this study investigated differences among the three main subspecies, which have allopatric origins: X. fastidiosa subsp. fastidiosa, multiplex, and pauca The origin of recombinogenic X. fastidiosa subsp. morus and sandyi was also assessed. The evolutionary rate of the 622 genes of the species core genome was estimated at the scale of an X. fastidiosa subsp. pauca subclade (7.62?×?10-7 substitutions per site per year), which was subsequently used to estimate divergence time for the subspecies and introduction events. The study characterized genes present in the accessory genome of each of the three subspecies and investigated the core genome to detect genes potentially under positive selection. Recombination is recognized to be the major driver of diversity in X. fastidiosa, potentially facilitating shifts to novel plant hosts. The relative effect of recombination in comparison to point mutation was calculated (r/m?=?2.259). Evidence of recombination was uncovered in the core genome alignment; X. fastidiosa subsp. fastidiosa in the United States was less prone to recombination, with an average of 3.22 of the 622 core genes identified as recombining regions, whereas a specific clade of X. fastidiosa subsp. multiplex was found to have on average 9.60 recombining genes, 93.2% of which originated from X. fastidiosa subsp. fastidiosa Interestingly, for X. fastidiosa subsp. morus, which was initially thought to be the outcome of genome-wide recombination between X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex, intersubspecies homologous recombination levels reached 15.30% in the core genome. Finally, there is evidence of X. fastidiosa subsp. pauca strains from citrus containing genetic elements acquired from strains infecting coffee plants as well as genetic elements from both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex In summary, our data provide new insights into the evolution and epidemiology of this plant pathogen.IMPORTANCEXylella fastidiosa is an important vector-borne plant pathogen. We used a set of 72 genomes that constitutes the largest assembled data set for this bacterial species so far to investigate genetic relationships and the impact of recombination on phylogenetic clades and to compare genome content at the subspecies level, and we used a molecular dating approach to infer the evolutionary rate of X. fastidiosa The results demonstrate that recombination is important in shaping the genomes of X. fastidiosa and that each of the main subspecies is under different selective pressures. We hope insights from this study will improve our understanding of X. fastidiosa evolution and biology.Copyright © 2019 American Society for Microbiology.


April 21, 2020

Whole Genome Sequencing and Analysis of Chlorimuron-Ethyl Degrading Bacteria Klebsiella pneumoniae 2N3.

Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33% and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ?ORF 0934, ?ORF 0492, and wild type (WT) reached their highest growth rates after 8-10 hours in incubation. The degradation rates of chlorimuron-ethyl by both ?ORF 0934 and ?ORF 0492 decreased in comparison to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ?ORF 0934, ?ORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.


April 21, 2020

Complete Genome Sequence of Spiroplasma phoeniceum Strain P40T, a Plant Pathogen Isolated from Diseased Plants of Madagascar Periwinkle [Catharanthus roseus (L.) G. Don].

The phytopathogen Spiroplasma phoeniceum was isolated from diseased plants of Madagascar periwinkle [Catharanthus roseus (L.) G. Don]. Here, we report the nucleotide sequence of the 1,791,576-bp circular chromosome and three plasmids of strain P40T This information serves as a resource for comparative analyses of spiroplasmal adaptations to diverse ecological niches.


April 21, 2020

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


April 21, 2020

Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima).

The Chinese chestnut (Castanea mollissima) is widely cultivated in China for nut production. This plant also plays an important ecological role in afforestation and ecosystem services. To facilitate and expand the use of C. mollissima for breeding and its genetic improvement, we report here the whole-genome sequence of C. mollissima.We produced a high-quality assembly of the C. mollissima genome using Pacific Biosciences single-molecule sequencing. The final draft genome is ~785.53 Mb long, with a contig N50 size of 944 kb, and we further annotated 36,479 protein-coding genes in the genome. Phylogenetic analysis showed that C. mollissima diverged from Quercus robur, a member of the Fagaceae family, ~13.62 million years ago.The high-quality whole-genome assembly of C. mollissima will be a valuable resource for further genetic improvement and breeding for disease resistance and nut quality. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020

A chromosome-level draft genome of the grain aphid Sitobion miscanthi.

Sitobion miscanthi is an ideal model for studying host plant specificity, parthenogenesis-based phenotypic plasticity, and interactions between insects and other species of various trophic levels, such as viruses, bacteria, plants, and natural enemies. However, the genome information for this species has not yet to be sequenced and published. Here, we analyzed the entire genome of a parthenogenetic female aphid colony using Pacific Biosciences long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly.The final draft genome assembly from 33.88 Gb of raw data was ~397.90 Mb in size, with a 2.05 Mb contig N50. Nine chromosomes were further assembled based on Hi-C data to a 377.19 Mb final size with a 36.26 Mb scaffold N50. The identified repeat sequences accounted for 26.41% of the genome, and 16,006 protein-coding genes were annotated. According to the phylogenetic analysis, S. miscanthi is closely related to Acyrthosiphon pisum, with S. miscanthi diverging from their common ancestor ~25.0-44.9 million years ago.We generated a high-quality draft of the S. miscanthi genome. This genome assembly should help promote research on the lifestyle and feeding specificity of aphids and their interactions with each other and species at other trophic levels. It can serve as a resource for accelerating genome-assisted improvements in insecticide-resistant management and environmentally safe aphid management. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020

Chromosomal-level assembly of the blolsod clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C.

The blood clam, Scapharca (Anadara) broughtonii, is an economically and ecologically important marine bivalve of the family Arcidae. Efforts to study their population genetics, breeding, cultivation, and stock enrichment have been somewhat hindered by the lack of a reference genome. Herein, we report the complete genome sequence of S. broughtonii, a first reference genome of the family Arcidae.A total of 75.79 Gb clean data were generated with the Pacific Biosciences and Oxford Nanopore platforms, which represented approximately 86× coverage of the S. broughtonii genome. De novo assembly of these long reads resulted in an 884.5-Mb genome, with a contig N50 of 1.80 Mb and scaffold N50 of 45.00 Mb. Genome Hi-C scaffolding resulted in 19 chromosomes containing 99.35% of bases in the assembled genome. Genome annotation revealed that nearly half of the genome (46.1%) is composed of repeated sequences, while 24,045 protein-coding genes were predicted and 84.7% of them were annotated.We report here a chromosomal-level assembly of the S. broughtonii genome based on long-read sequencing and Hi-C scaffolding. The genomic data can serve as a reference for the family Arcidae and will provide a valuable resource for the scientific community and aquaculture sector. © The Author(s) 2019. Published by Oxford University Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.