Menu
April 21, 2020  |  

A reference-grade wild soybean genome.

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2?Mb and a contig N50 of 3.3?Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


April 21, 2020  |  

The Impact of cDNA Normalization on Long-Read Sequencing of a Complex Transcriptome

Normalization of cDNA is widely used to improve the coverage of rare transcripts in analysis of transcriptomes employing next-generation sequencing. Recently, long-read technology has been emerging as a powerful tool for sequencing and construction of transcriptomes, especially for complex genomes containing highly similar transcripts and transcript-spliced isoforms. Here, we analyzed the transcriptome of sugarcane, with a highly polyploidy plant genome, by PacBio isoform sequencing (Iso-Seq) of two different cDNA library preparations, with and without a normalization step. The results demonstrated that, while the two libraries included many of the same transcripts, many longer transcripts were removed and many new generally shorter transcripts were detected by normalization. For the same input cDNA and the same data yield, the normalized library recovered more total transcript isoforms, number of predicted gene families and orthologous groups, resulting in a higher representation for the sugarcane transcriptome, compared to the non-normalized library. The non-normalized library, on the other hand, included a wider transcript length range with more longer transcripts above ~1.25 kb, more transcript isoforms per gene family and gene ontology terms per transcript. A large proportion of the unique transcripts comprising ~52% of the normalized library were expressed at a lower level than the unique transcripts from the non-normalized library, across three tissue types tested including leaf, stalk and root. About 83% of the total 5,348 predicted long noncoding transcripts was derived from the normalized library, of which ~80% was derived from the lowly expressed fraction. Functional annotation of the unique transcripts suggested that each library enriched different functional transcript fractions. This demonstrated the complementation of the two approaches in obtaining a complete transcriptome of a complex genome at the sequencing depth used in this study.


April 21, 2020  |  

Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield.

Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of cannabis yields reported in scientific literature aimed to identify the main factors contributing to cannabis yield per plant, per square meter, and per W of lighting electricity. In line with previous research we found that variety, plant density, light intensity and fertilization influence cannabis yield and cannabinoid content; we also identified pot size, light type and duration of the flowering period as predictors of yield and THC accumulation. We provide insight into the critical role of light intensity, quality, and photoperiod in determining cannabis yields, with particular focus on the potential for light-emitting diodes (LEDs) to improve growth and reduce energy requirements. We propose that the vast amount of genomics data currently available for cannabis can be used to better understand the effect of genotype on yield. Finally, we describe diversification that is likely to emerge in cannabis growing systems and examine the potential role of plant-growth promoting rhizobacteria (PGPR) for growth promotion, regulation of cannabinoid biosynthesis, and biocontrol.


April 21, 2020  |  

Comparative transcriptome analyses of genes involved in sulforaphane metabolism at different treatment in Chinese kale using full-length transcriptome sequencing.

Sulforaphane is a natural isothiocyanate available from cruciferous vegetables with multiple characteristics including antioxidant, antitumor and anti-inflammatory effect. Single-molecule real-time (SMRT) sequencing has been used for long-read de novo assembly of plant genome. Here, we investigated the molecular mechanism related to glucosinolates biosynthesis in Chinese kale using combined NGS and SMRT sequencing.SMRT sequencing produced 185,134 unigenes, higher than 129,325 in next-generation sequencing (NGS). NaCl (75?mM), methyl jasmonate (MeJA, 40?µM), selenate (Se, sodium selenite 100?µM), and brassinolide (BR, 1.5?µM) treatment induced 6893, 13,287, 13,659 and 11,041 differentially expressed genes (DEGs) in Chinese kale seedlings comparing with control. These genes were associated with pathways of glucosinolates biosynthesis, including phenylalanine, tyrosine and tryptophan biosynthesis, cysteine and methionine metabolism, and glucosinolate biosynthesis. We found NaCl decreased sulforaphane and glucosinolates (indolic and aliphatic) contents and downregulated expression of cytochrome P45083b1 (CYP83b1), S-alkyl-thiohydroximatelyase or carbon-sulfur lyase (SUR1) and UDP-glycosyltransferase 74B1 (UGT74b1). MeJA increased sulforaphane and glucosinolates contents and upregulated the expression of CYP83b1, SUR1 and UGT74b1; Se increased sulforaphane; BR increased expression of CYP83b1, SUR1 and UGT74b1, and increased glucosinolates contents. The desulfoglucosinolate sulfotransferases ST5a_b_c were decreased by all treatments.We confirmed that NaCl inhibited the biosynthesis of both indolic and aliphatic glucosinolates, while MeJA and BR increased them. MeJA and BR treatments, conferred the biosynthesis of glucosinolates, and Se and MeJA contributed to sulforaphane in Chinese kale via regulating the expression of CYP83b1, SUR1 and UGT74b1.


April 21, 2020  |  

Comprehensive characterization of T-DNA integration induced chromosomal rearrangement in a birch T-DNA mutant.

Integration of T-DNA into plant genomes via Agrobacterium may interrupt gene structure and generate numerous mutants. The T-DNA caused mutants are valuable materials for understanding T-DNA integration model in plant research. T-DNA integration in plants is complex and still largely unknown. In this work, we reported that multiple T-DNA fragments caused chromosomal translocation and deletion in a birch (Betula platyphylla × B. pendula) T-DNA mutant yl.We performed PacBio genome resequencing for yl and the result revealed that two ends of a T-DNA can be integrated into plant genome independently because the two ends can be linked to different chromosomes and cause chromosomal translocation. We also found that these T-DNA were connected into tandem fragment regardless of direction before integrating into plant genome. In addition, the integration of T-DNA in yl genome also caused several chromosomal fragments deletion. We then summarized three cases for T-DNA integration model in the yl genome. (1) A T-DNA fragment is linked to the two ends of a double-stranded break (DSB); (2) Only one end of a T-DNA fragment is linked to a DSB; (3) A T-DNA fragment is linked to the ends of different DSBs. All the observations in the yl genome supported the DSB repair model.In this study, we showed a comprehensive genome analysis of a T-DNA mutant and provide a new insight into T-DNA integration in plants. These findings would be helpful for the analysis of T-DNA mutants with special phenotypes.


April 21, 2020  |  

Comparative genomic and phylogenetic analyses of Populus section Leuce using complete chloroplast genome sequences

Species of Populus section Leuce are distributed throughout most parts of the Northern Hemisphere and have important economic and ecological significance. However, due to frequent hybridization within Leuce, the phylogenetic relationship between species has not been clarified. The chloroplast (cp) genome is characterized by maternal inheritance and relatively conservative mutation rates; thus, it is a powerful tool for building phylogenetic trees. In this study, we used the PacBio SEQUEL software to determine that the cp genome of Populus tomentosa has a length of 156,558 bp including a long single-copy region (84,717 bp), a small single-copy region (16,555 bp), and a pair of inverted repeat regions (27,643 bp). The cp genome contains 131 unique genes, including 37 transfer RNAs, 8 ribosomal RNAs, and 86 protein-coding genes. We compared the cp genomes of seven species of section Leuce and identified five cp DNA markers with >?1% variable sites. Phylogenetic analyses revealed two evolutionary branches for section Leuce. The species with the closest relationship with P. tomenstosa was P. adenopoda, followed by P. alba. These cp genome data will help to determine the cp evolution of section Leuce and further elucidate the origin of P. tomentosa.


April 21, 2020  |  

Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.).

Alfalfa is the most extensively cultivated forage legume. Salinity is a major environmental factor that impacts on alfalfa’s productivity. However, little is known about the molecular mechanisms underlying alfalfa responses to salinity, especially the relative contribution of the two important components of osmotic and ionic stress.In this study, we constructed the first full-length transcriptome database for alfalfa root tips under continuous NaCl and mannitol treatments for 1, 3, 6, 12, and 24?h (three biological replicates for each time points, including the control group) via PacBio Iso-Seq. This resulted in the identification of 52,787 full-length transcripts, with an average length of 2551?bp. Global transcriptional changes in the same 33 stressed samples were then analyzed via BGISEQ-500 RNA-Seq. Totals of 8861 NaCl-regulated and 8016 mannitol-regulated differentially expressed genes (DEGs) were identified. Metabolic analyses revealed that these DEGs overlapped or diverged in the cascades of molecular networks involved in signal perception, signal transduction, transcriptional regulation, and antioxidative defense. Notably, several well characterized signalling pathways, such as CDPK, MAPK, CIPK, and PYL-PP2C-SnRK2, were shown to be involved in osmotic stress, while the SOS core pathway was activated by ionic stress. Moreover, the physiological shifts of catalase and peroxidase activity, glutathione and proline content were in accordance with dynamic transcript profiles of the relevant genes, indicating that antioxidative defense system plays critical roles in response to salinity stress.Overall, our study provides evidence that the response to salinity stress in alfalfa includes both osmotic and ionic components. The key osmotic and ionic stress-related genes are candidates for future studies as potential targets to improve resistance to salinity stress via genetic engineering.


April 21, 2020  |  

Retrotranspositional landscape of Asian rice revealed by 3000 genomes.

The recent release of genomic sequences for 3000 rice varieties provides access to the genetic diversity at species level for this crop. We take advantage of this resource to unravel some features of the retrotranspositional landscape of rice. We develop software TRACKPOSON specifically for the detection of transposable elements insertion polymorphisms (TIPs) from large datasets. We apply this tool to 32 families of retrotransposons and identify more than 50,000 TIPs in the 3000 rice genomes. Most polymorphisms are found at very low frequency, suggesting that they may have occurred recently in agro. A genome-wide association study shows that these activations in rice may be triggered by external stimuli, rather than by the alteration of genetic factors involved in transposable element silencing pathways. Finally, the TIPs dataset is used to trace the origin of rice domestication. Our results suggest that rice originated from three distinct domestication events.


April 21, 2020  |  

External memory BWT and LCP computation for sequence collections with applications

Background: Sequencing technologies produce larger and larger collections of biosequences that have to be stored in compressed indices supporting fast search operations. Many compressed indices are based on the Bur- rows–Wheeler Transform (BWT) and the longest common prefix (LCP) array. Because of the sheer size of the input it is important to build these data structures in external memory and time using in the best possible way the available RAM. Results: We propose a space-efficient algorithm to compute the BWT and LCP array for a collection of sequences in the external or semi-external memory setting. Our algorithm splits the input collection into subcollections sufficiently small that it can compute their BWT in RAM using an optimal linear time algorithm. Next, it merges the partial BWTs in external or semi-external memory and in the process it also computes the LCP values. Our algorithm can be modi- fied to output two additional arrays that, combined with the BWT and LCP array, provide simple, scan-based, external memory algorithms for three well known problems in bioinformatics: the computation of maximal repeats, the all pairs suffix–prefix overlaps, and the construction of succinct de Bruijn graphs. Conclusions: We prove that our algorithm performs O(nmaxlcp) sequential I/Os, where n is the total length of the collection and maxlcp is the maximum LCP value. The experimental results show that our algorithm is only slightly slower than the state of the art for short sequences but it is up to 40 times faster for longer sequences or when the available RAM is at least equal to the size of the input.


October 23, 2019  |  

Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases.

Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.


October 23, 2019  |  

Overview of the wheat genetic transformation and breeding status in China.

In the past two decades, Chinese scientists have achieved significant progress on three aspects of wheat genetic transformation. First, the wheat transformation platform has been established and optimized to improve the transformation efficiency, shorten the time required from starting of transformation procedure to the fertile transgenic wheat plants obtained as well as to overcome the problem of genotype-dependent for wheat genetic transformation in wide range of wheat elite varieties. Second, with the help of many emerging techniques such as CRISPR/cas9 function of over 100 wheat genes has been investigated. Finally, modern technology has been combined with the traditional breeding technique such as crossing to accelerate the application of wheat transformation. Overall, the wheat end-use quality and the characteristics of wheat stress tolerance have been improved by wheat genetic engineering technique. So far, wheat transgenic lines integrated with quality-improved genes and stress tolerant genes have been on the way of Production Test stage in the field. The debates and the future studies on wheat transformation have been discussed, and the brief summary of Chinese wheat breeding research history has also been provided in this review.


October 23, 2019  |  

A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice.

Transcription activator-like (TAL) effectors are type III-delivered transcription factors that enhance the virulence of plant pathogenic Xanthomonas species through the activation of host susceptibility (S) genes. TAL effectors recognize their DNA target(s) via a partially degenerate code, whereby modular repeats in the TAL effector bind to nucleotide sequences in the host promoter. Although this knowledge has greatly facilitated our power to identify new S genes, it can also be easily used to screen plant genomes for variations in TAL effector target sequences and to predict for loss-of-function gene candidates in silico. In a proof-of-principle experiment, we screened a germplasm of 169 rice accessions for polymorphism in the promoter of the major bacterial blight susceptibility S gene OsSWEET14, which encodes a sugar transporter targeted by numerous strains of Xanthomonas oryzae pv. oryzae. We identified a single allele with a deletion of 18 bp overlapping with the binding sites targeted by several TAL effectors known to activate the gene. We show that this allele, which we call xa41(t), confers resistance against half of the tested Xoo strains, representative of various geographic origins and genetic lineages, highlighting the selective pressure on the pathogen to accommodate OsSWEET14 polymorphism, and reciprocally the apparent limited possibilities for the host to create variability at this particular S gene. Analysis of xa41(t) conservation across the Oryza genus enabled us to hypothesize scenarios as to its evolutionary history, prior to and during domestication. Our findings demonstrate that resistance through TAL effector-dependent loss of S-gene expression can be greatly fostered upon knowledge-based molecular screening of a large collection of host plants.© 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.


October 23, 2019  |  

Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.

The possibility to predict the outcome of targeted DNA double-stranded break (DSB) repair would be desirable for genome editing. Furthermore the consequences of mis-repair of potentially cell-lethal DSBs and the underlying pathways are not yet fully understood. Here we study the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced mutation spectra at three selected endogenous loci in Arabidopsis thaliana by deep sequencing of long amplicon libraries. Notably, we found sequence-dependent genomic features that affected the DNA repair outcome. Deletions of 1-bp to <1000-bp size and/or very short insertions, deletions >1 kbp (all due to NHEJ) and deletions combined with insertions between 5-bp to >100 bp [caused by a synthesis-dependent strand annealing (SDSA)-like mechanism] occurred most frequently at all three loci. The appearance of single-stranded annealing events depends on the presence and distance between repeats flanking the DSB. The frequency and size of insertions is increased if a sequence with high similarity to the target site was available in cis. Most deletions were linked to pre-existing microhomology. Deletion and/or insertion mutations were blunt-end ligated or via de novo generated microhomology. While most mutation types and, to some degree, their predictability are comparable with animal systems, the broad range of deletion mutations seems to be a peculiar feature of the plant A. thaliana.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

A chromosome conformation capture ordered sequence of the barley genome.

Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.


September 22, 2019  |  

Leveraging multiple transcriptome assembly methods for improved gene structure annotation.

The performance of RNA sequencing (RNA-seq) aligners and assemblers varies greatly across different organisms and experiments, and often the optimal approach is not known beforehand.Here, we show that the accuracy of transcript reconstruction can be boosted by combining multiple methods, and we present a novel algorithm to integrate multiple RNA-seq assemblies into a coherent transcript annotation. Our algorithm can remove redundancies and select the best transcript models according to user-specified metrics, while solving common artifacts such as erroneous transcript chimerisms.We have implemented this method in an open-source Python3 and Cython program, Mikado, available on GitHub.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.