April 21, 2020  |  

Genomic and transcriptomic characterization of Pseudomonas aeruginosa small colony variants derived from a chronic infection model.

Phenotypic change is a hallmark of bacterial adaptation during chronic infection. In the case of chronic Pseudomonas aeruginosa lung infection in patients with cystic fibrosis, well-characterized phenotypic variants include mucoid and small colony variants (SCVs). It has previously been shown that SCVs can be reproducibly isolated from the murine lung following the establishment of chronic infection with mucoid P. aeruginosa strain NH57388A. Using a combination of single-molecule real-time (PacBio) and Illumina sequencing we identify a large genomic inversion in the SCV through recombination between homologous regions of two rRNA operons and an associated truncation of one of the 16S rRNA genes and suggest this may be the genetic switch for conversion to the SCV phenotype. This phenotypic conversion is associated with large-scale transcriptional changes distributed throughout the genome. This global rewiring of the cellular transcriptomic output results in changes to normally differentially regulated genes that modulate resistance to oxidative stress, central metabolism and virulence. These changes are of clinical relevance because the appearance of SCVs during chronic infection is associated with declining lung function.

April 21, 2020  |  

Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria.

Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B.?ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B.?ambifaria. The biosynthetic gene cluster responsible for the production of the metabolite cepacin was identified and directly shown to mediate protection of germinating crops against Pythium damping-off disease. B.?ambifaria maintained biopesticidal protection and overall fitness in the soil after deletion of its third replicon, a non-essential plasmid associated with virulence in Burkholderia?cepacia complex bacteria. Removal of the third replicon reduced B.?ambifaria persistence in a murine respiratory infection model. Here, we show that by using interdisciplinary phylogenomic, metabolomic and functional approaches, the mode of action of natural biological control agents related to pathogens can be systematically established to facilitate their future exploitation.

April 21, 2020  |  

Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.

Plant-beneficial Pseudomonas spp. competitively colonize the rhizosphere and display plant-growth promotion and/or disease-suppression activities. Some strains within the P. fluorescens species complex produce phenazine derivatives, such as phenazine-1-carboxylic acid. These antimicrobial compounds are broadly inhibitory to numerous soil-dwelling plant pathogens and play a role in the ecological competence of phenazine-producing Pseudomonas spp. We assembled a collection encompassing 63 strains representative of the worldwide diversity of plant-beneficial phenazine-producing Pseudomonas spp. In this study, we report the sequencing of 58 complete genomes using PacBio RS II sequencing technology. Distributed among four subgroups within the P. fluorescens species complex, the diversity of our collection is reflected by the large pangenome which accounts for 25 413 protein-coding genes. We identified genes and clusters encoding for numerous phytobeneficial traits, including antibiotics, siderophores and cyclic lipopeptides biosynthesis, some of which were previously unknown in these microorganisms. Finally, we gained insight into the evolutionary history of the phenazine biosynthetic operon. Given its diverse genomic context, it is likely that this operon was relocated several times during Pseudomonas evolution. Our findings acknowledge the tremendous diversity of plant-beneficial phenazine-producing Pseudomonas spp., paving the way for comparative analyses to identify new genetic determinants involved in biocontrol, plant-growth promotion and rhizosphere competence. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

April 21, 2020  |  

The complete genome of the antifungal bacterium Pseudomonas sp. strain MS82

The genomic sequence of Pseudomonas sp. strain MS82 isolated from the rhizosphere of a soybean plant is reported and analyzed in relation to its extensive antifungal activity. Broth media used for production of the antifungal extract from strain MS82 against the mushroom pathogen Trichoderma viride were optimized using the routine plate bioassays. Culture extract of strain 82 in the peptone-K2HPO4-MgSO4 medium (PKM; peptone 20 g/L, K2HPO4 1.5 g/L, MgSO4 1.5 g/L and sterilized water) showed the best antifungal activity with an inhibition rate of 88.69thinspacetextpmthinspace3.87% to the fungal pathogen. Control efficacy of the T. viride contamination was investigated in mushroom production compost. The disease severity index of P. ostreatus hyphae infected by T. viride of treatment mixed with MS82 supernatant (38.33thinspacetextpmthinspace5.20%) was lower than that of the compost mixed with non-inoculated broth (97.50thinspacetextpmthinspace2.50%). The multilocus sequence analysis, containing four partial sequences from the gyrB, rpoB, recA and rpoD, suggests that strain MS82 is a Pseudomonas strain. The strain MS82 genome consists of a circular chromosome of 6,207,556 bp that was predicted to encode 5401 proteins and 131 RNA genes. Genome analysis revealed the presence of the gene clusters for biosynthesis of antifungal compounds, such as phenazine, pyocyanin, pyoverdine, volatile HCN and cyclic lipopeptides (arthrofactin). Genome analysis presented in the report will provide insights into development of biological control for fungal contamination in mushroom cultivation.

April 21, 2020  |  

Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa.

Genomic information for outlier strains of Pseudomonas aeruginosa is exiguous when compared with classical strains. We sequenced and constructed the complete genome of an environmental strain CR1 of P. aeruginosa and performed the comparative genomic analysis. It clustered with the outlier group, hence we scaled up the analyses to understand the differences in environmental and clinical outlier strains. We identified eight new regions of genomic plasticity and a plasmid pCR1 with a VirB/D4 complex followed by trimeric auto-transporter that can induce virulence phenotype in the genome of strain CR1. Virulence genotype analysis revealed that strain CR1 lacked hemolytic phospholipase C and D, three genes for LPS biosynthesis and had reduced antibiotic resistance genes when compared with clinical strains. Genes belonging to proteases, bacterial exporters and DNA stabilization were found to be under strong positive selection, thus facilitating pathogenicity and survival of the outliers. The outliers had the complete operon for the production of vibrioferrin, a siderophore present in plant growth promoting bacteria. The competence to acquire multidrug resistance and new virulence factors makes these strains a potential threat. However, we identified major regulatory hubs that can be used as drug targets against both the classical and outlier groups.

April 21, 2020  |  

Complete genome sequence of Caulobacter flavus RHGG3T, a type species of the genus Caulobacter with plant growth-promoting traits and heavy metal resistance.

Caulobacter flavus RHGG3T, a novel type species in the genus Caulobacter, originally isolated from rhizosphere soil of watermelon (Citrullus lanatus), has the ability to improve the growth of watermelon seedling and tolerate heavy metals. In vitro, C. flavus RHGG3T was able to solubilize phosphate (80.56 mg L-1), produce indole-3-acetic acid (IAA) (11.58 mg L-1) and was resistant to multiple heavy metals (copper, zinc, cadmium, cobalt and lead). Inoculating watermelon with this strain increased shoot and root length by 22.1% and 43.7%, respectively, and the total number of lateral roots by 55.9% compared to non-inoculated watermelon. In this study, we present the complete genome sequence of C. flavus RHGG3T, which was comprised of a single circular chromosome of 5,659,202 bp with a G?+?C content of 69.25%. An annotation analysis revealed that the C. flavus RHGG3T genome contained 5172 coding DNA sequences, 9 rRNA and 55 tRNA genes. Genes related to plant growth promotion (PGP), such as those associated with phosphate solubilization, nitrogen fixation, IAA, phenazine, volatile compounds, spermidine and cobalamin synthesis, were found in the C. flavus RHGG3T genome. Some genes responsible for heavy metal tolerance were also identified. The genome sequence of strain RHGG3T reported here provides new insight into the molecular mechanisms underlying the promotion of plant growth and the resistance to heavy metals in C. flavus. This study will be valuable for further exploration of the biotechnological applications of strain RHGG3T in agriculture.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.