fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, June 1, 2021

SMRT Sequencing of whole mitochondrial genomes and its utility in association studies of metabolic disease.

In this study we demonstrate the utility of Single-Molecule Real Time SMRT sequencing to detect variants and to recapitulate whole mitochondrial genomes in an association study of Metabolic syndrome using samples from a well-studied cohort from Micronesia. The Micronesian island of Kosrae is a rare genetic isolate that offers significant advantages for genetic studies of human disease. Kosrae suffers from one of the highest rates of MetS (41%), obesity (52%), and diabetes (17%) globally and has a homogeneous environment making this an excellent population in which to study these significant health problems. We are conducting family-based association analyses aimed at…

Read More »

Tuesday, June 1, 2021

Genome in a Bottle: You’ve sequenced. How well did you do?

Purpose: Clinical laboratories, research laboratories and technology developers all need DNA samples with reliably known genotypes in order to help validate and improve their methods. The Genome in a Bottle Consortium (genomeinabottle.org) has been developing Reference Materials with high-accuracy whole genome sequences to support these efforts.Methodology: Our pilot reference material is based on Coriell sample NA12878 and was released in May 2015 as NIST RM 8398 (tinyurl.com/giabpilot). To minimize bias and improve accuracy, 11 whole-genome and 3 exome data sets produced using 5 different technologies were integrated using a systematic arbitration method [1]. The Genome in a Bottle Analysis Group…

Read More »

Tuesday, June 1, 2021

An update on goat genomics

Goats are specialized in dairy, meat and fiber production, being adapted to a wide range of environmental conditions and having a large economic impact in developing countries. In the last years, there have been dramatic advances in the knowledge of the structure and diversity of the goat genome/transcriptome and in the development of genomic tools, rapidly narrowing the gap between goat and related species such as cattle and sheep. Major advances are: 1) publication of a de novo goat genome reference sequence; 2) Development of whole genome high density RH maps, and; 3) Design of a commercial 50K SNP array.…

Read More »

Tuesday, June 1, 2021

Screening and characterization of causative structural variants for bipolar disorder in a significantly linked chromosomal region onXq24-q27 in an extended pedigree from a genetic isolate

Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.

Read More »

Tuesday, June 1, 2021

Structural variant in the RNA Binding Motif Protein, X-Linked 2 (RBMX2) gene found to be linked to bipolar disorder

Bipolar disorder (BD) is a phenotypically and genetically complex neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BD susceptibility, however no disease genes have yet to be identified. Here, we have fully characterized a ~12 Mb significantly linked (lod score=3.54) genomic region on chromosome Xq24-q27 in an extended family from…

Read More »

Tuesday, June 1, 2021

Comprehensive variant detection in a human genome with highly accurate long reads

Introduction: Long-read sequencing has been applied successfully to assemble genomes and detect structural variants. However, due to high raw-read error rates (10-15%), it has remained difficult to call small variants from long reads. Recent improvements in library preparation and sequencing chemistry have increased length, accuracy, and throughput of PacBio circular consensus sequencing (CCS) reads, resulting in 15-20kb reads with average read quality above 99%. Materials and Methods: We sequenced a library from human reference sample HG002 to 18-fold coverage on the PacBio Sequel II with two SMRT Cells 8M. The CCS algorithm was used to generate highly accurate (average 99.9%)…

Read More »

Tuesday, April 21, 2020

Characterization of Reference Materials for Genetic Testing of CYP2D6 Alleles: A GeT-RM Collaborative Project.

Pharmacogenetic testing increasingly is available from clinical and research laboratories. However, only a limited number of quality control and other reference materials currently are available for the complex rearrangements and rare variants that occur in the CYP2D6 gene. To address this need, the Division of Laboratory Systems, CDC-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Cell Repositories (Camden, NJ), has characterized 179 DNA samples derived from Coriell cell lines. Testing included the recharacterization of 137 genomic DNAs that were genotyped in previous Genetic Testing Reference Material Coordination…

Read More »

Tuesday, April 21, 2020

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions…

Read More »

Tuesday, April 21, 2020

A robust benchmark for germline structural variant detection

New technologies and analysis methods are enabling genomic structural variants (SVs) to be detected with ever-increasing accuracy, resolution, and comprehensiveness. Translating these methods to routine research and clinical practice requires robust benchmark sets. We developed the first benchmark set for identification of both false negative and false positive germline SVs, which complements recent efforts emphasizing increasingly comprehensive characterization of SVs. To create this benchmark for a broadly consented son in a Personal Genome Project trio with broadly available cells and DNA, the Genome in a Bottle (GIAB) Consortium integrated 19 sequence-resolved variant calling methods, both alignment- and de novo assembly-based,…

Read More »

Tuesday, April 21, 2020

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently…

Read More »

Tuesday, April 21, 2020

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow…

Read More »

Tuesday, April 21, 2020

The comparative genomics and complex population history of Papio baboons.

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus Papio) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression. We produced a reference genome assembly for the olive baboon (Papio anubis) and whole-genome sequence data for all six extant species. We document multiple episodes of admixture and introgression during the radiation of Papio baboons, thus demonstrating their value as a model of…

Read More »

Tuesday, April 21, 2020

Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data.

Construction of chromosome-level assembly is a vital step in achieving the goal of a ‘Platinum’ genome, but it remains a major challenge to assemble and anchor sequences to chromosomes in autopolyploid or highly heterozygous genomes. High-throughput chromosome conformation capture (Hi-C) technology serves as a robust tool to dramatically advance chromosome scaffolding; however, existing approaches are mostly designed for diploid genomes and often with the aim of reconstructing a haploid representation, thereby having limited power to reconstruct chromosomes for autopolyploid genomes. We developed a novel algorithm (ALLHiC) that is capable of building allele-aware, chromosomal-scale assembly for autopolyploid genomes using Hi-C paired-end…

Read More »

1 2

Subscribe for blog updates:

Archives

Stay
Current

Visit our blog »