June 1, 2021

Structural variant in the RNA Binding Motif Protein, X-Linked 2 (RBMX2) gene found to be linked to bipolar disorder

Author(s): Ekholm, J. M. and Rowell, W. J. and Paulin, L. and Kujawa, S. and Raterman, D. and Mayhew, G. and Wendt, J. and Burgess, D. L. and Partonen, T. and Paunio, T. and Laine, P. and Auvinen, P.

Bipolar disorder (BD) is a phenotypically and genetically complex neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BD susceptibility, however no disease genes have yet to be identified. Here, we have fully characterized a ~12 Mb significantly linked (lod score=3.54) genomic region on chromosome Xq24-q27 in an extended family from a genetic isolate that was using long-read single molecule, real-time (SMRT) sequencing. The family segregates BD in at least 4 generations with 16 individuals out of 61 affected. Thus, this family portrays a highly elevated reoccurrence risk compared to the general population. It is expected that the genetic complexity would be reduced in isolated populations, even in genetically complex disorders such as BD, as in the case of this extended family. We selected 16 key individuals from the X-chromosomally linked family to be sequenced. These selected individuals either carried the disease haplotype, were non-carriers of the disease haplotype, or served as married-in controls. We designed a Nimblegen capture array enriching for 5-9 kb fragments spanning the entire 12 Mb region that were then sequenced using long-read SMRT sequencing to screen for causative structural variants (SVs) explaining the increased risk for BD in this extended family. Altogether, 192 SVs were detected in the critically linked region however most of these represented common variants that could be seen across many of the family members regardless of the disease status. One SV stood out that showed perfect segregation among all affected individuals that were carriers of the disease haplotype. This was a 330bp Alu deletion in intron 4 of the RNA Binding Motif Protein, X-Linked 2 (RBMX2) gene that has previously been shown to play a central role in brain development and function. Moreover, Alu elements in general have also previously been associated with at least 37 neurological and neurodegenerative disorders. In order to validate the finding and the functionality of the identified SV further studies like isoform characterization are warranted.

Organization: PacBio, University of Helsinki, Roche NimbleGen, National Institute for Health and Welfare (THL), Department of Health,
Year: 2019

View Conference Poster

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.