August 19, 2021  |  

Case Study: Sequencing an historic bacterial collection for the future

The UK’s National Collection of Type Cultures (NCTC) is a unique collection of more than 5,000 expertly preserved and authenticated bacterial cultures, many of historical significance. Founded in 1920, NCTC is the longest established collection of its type anywhere in the world, with a history of its own that has reflected — and contributed to — the evolution of microbiology for more than 100 years.


August 19, 2021  |  

Application Brief: Targeted sequencing for amplicons – Best Practices

With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.


August 19, 2021  |  

Application Brief: Long-read RNA sequencing – Best Practices

With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel Systems, you can easily and affordably sequence complete transcript isoforms in genes of interest or across the entire transcriptome. The Iso-Seq method allows users to generate full-length cDNA sequences up to 10 kb in length — with no assembly required — to confidently characterize full-length transcript isoforms.


August 19, 2021  |  

Application Brief: Single-cell RNA sequencing with HiFi reads – Best Practices

With PacBio single-cell RNA sequencing using the Iso-Seq method, you can now distinguish between alternative transcript isoforms at the single-cell level. The highly accurate long reads (HiFi reads) can span the entire 5′ to 3′ end of a transcript, allowing a high-resolution view of isoform diversity and revealing cell-to-cell heterogeneity without the need for assembly.


June 1, 2021  |  

Single Molecule Real Time (SMRT) sequencing sensitively detects polyclonal and compound BCR-ABL in patients who relapse on kinase inhibitor therapy.

Secondary kinase domain (KD) mutations are the most well-recognized mechanism of resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) and other cancers. In some cases, multiple drug resistant KD mutations can coexist in an individual patient (“polyclonality”). Alternatively, more than one mutation can occur in tandem on a single allele (“compound mutations”) following response and relapse to sequentially administered TKI therapy. Distinguishing between these two scenarios can inform the clinical choice of subsequent TKI treatment. There is currently no clinically adaptable methodology that offers the ability to distinguish polyclonal from compound mutations. Due to the size of the BCR-ABL KD where TKI-resistant mutations are detected, next-generation platforms are unable to generate reads of sufficient length to determine if two mutations separated by 500 nucleotides reside on the same allele. Pacific Biosciences RS Single Molecule Real-Time (SMRT) circular consensus sequencing technology is a novel third generation deep sequencing technology capable of rapidly and reliably achieving average read lengths of ~1000 bp and frequently beyond 3000 bp, allowing sequencing of the entire ABL KD on single strand of DNA. We sought to address the ability of SMRT sequencing technology to distinguish polyclonal from compound mutations using clinical samples obtained from patients who have relapsed on BCR-ABL TKI treatment.


June 1, 2021  |  

Sequencing of expanded CGG repeats in the FMR1 gene.

Alleles of the FMR1 gene with more than 200 CGG repeats generally undergo methylation-coupled gene silencing, resulting in fragile X syndrome, the leading heritable form of cognitive impairment. Smaller expansions (55-200 CGG repeats) result in elevated levels of FMR1 mRNA, which is directly responsible for the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). For mechanistic studies and genetic counseling, it is important to know with precision the number of CGG repeats; however, no existing DNA sequencing method is capable of sequencing through more than ~100 CGG repeats, thus limiting the ability to precisely characterize the disease-causing alleles. The recent development of single molecule, real-time sequencing represents a novel approach to DNA sequencing that couples the intrinsic processivity of DNA polymerase with the ability to read polymerase activity on a single-molecule basis. Further, the accuracy of the method is improved through the use of circular templates, such that each molecule can be read multiple times to produce a circular consensus sequence (CCS). We have succeeded in generating CCS reads representing multiple passes through both strands of repeat tracts exceeding 700 CGGs (>2 kb of 100 percent CG) flanked by native FMR1 sequence, with single-molecule readlengths exceeding 12 kb. This sequencing approach thus enables us to fully characterize the previously intractable CGG-repeat sequence, leading to a better understanding of the distinct associated molecular pathologies. Real-time kinetic data also provides insight into the activity of DNA polymerase inside this unique sequence. The methodology should be widely applicable for studies of the molecular pathogenesis of an increasing number of repeat expansion-associated neurodegenerative and neurodevelopmental disorders, and for the efficient identification of such disorders in the clinical setting.


June 1, 2021  |  

Evaluating the potential of new sequencing technologies for genotyping and variation discovery in human data.

A first look at Pacific Biosciences RS data Pacific Biosciences technology provides a fundamentally new data type that provides the potential to overcome these limitations by providing significantly longer reads (now averaging >1kb), enabling more unique seeds for reference alignment. In addition, the lack of amplification in the library construction step avoids a common source of base composition bias. With these potential advantages in mind, we here evaluate the utility of the Pacific Biosciences RS platform for human medical resequencing projects by assessing the quality of the raw sequencing data, as well as its use for SNP discovery and genotyping using the Genome Analysis Toolkit (GATK).


June 1, 2021  |  

SMRT Sequencing of whole mitochondrial genomes and its utility in association studies of metabolic disease.

In this study we demonstrate the utility of Single-Molecule Real Time SMRT sequencing to detect variants and to recapitulate whole mitochondrial genomes in an association study of Metabolic syndrome using samples from a well-studied cohort from Micronesia. The Micronesian island of Kosrae is a rare genetic isolate that offers significant advantages for genetic studies of human disease. Kosrae suffers from one of the highest rates of MetS (41%), obesity (52%), and diabetes (17%) globally and has a homogeneous environment making this an excellent population in which to study these significant health problems. We are conducting family-based association analyses aimed at identifying specific mitochondrial variants that contribute to obesity and other co-morbid conditions. We sequenced whole mitochondrial genomes from 10 Kosraen individuals who represent greater than 25 % of the mitochondrial genetic diversity for the entire Kosraen population. Using Pacific Biosciences C2 chemistry, SMRTbell libraries were constructed from pooled, full-length, unsheared 5 kb PCR amplicons, tiling the entire 16.6 kb mtDNA genome. Average read lengths for each sample were between 2500-3000 bp, with 5% of reads between 6,000-8,000 bases, depending on movie lengths. The data generated in this study serve as proof of principle that SMRT Sequencing data can be utilized for identification of high-quality variants and complete mitochondrial genome sequences. These data will be leveraged to identify causative variants for Metabolic syndrome and associated disorders.


June 1, 2021  |  

Sequencing and de novo assembly of the 17q21.31 disease associated region using long reads generated by Pacific Biosciences SMRT Sequencing technology.

Assessment of genome-wide variation revealed regions of the genome with complex, structurally diverse haplotypes that are insufficiently represented in the human reference genome. The 17q21.31 region is one of the most dynamic and complex regions of the human genome. Different haplotypes exist, in direct and inverted orientation, showing evidence of positive selection and predisposing to microdeletion associated with mental retardation. Sequencing of different haplotypes is extremely important to characterize the spectrum of structural variation at this locus. However, de novo assembly with second-generation sequencing reads is still problematic. Using PacBio technology we have sequenced and de novo assembled a tiling path of eight BAC clones (~1.6 Mb region) across this medically relevant region from the library of a hydatidiform mole. Complete hydatidiform moles arise from the fertilization of an enucleated egg from a single sperm and therefore carry a haploid complement of the human genome, eliminating allelic variation that may confound mapping and assembly. The PacBio RS system enables single molecule real time sequencing, featuring long reads and fast turnaround times. With deep sequencing, PacBio reads were able to generate a very uniform sequencing coverage with close to 100% coverage of most of the target interval regions covered. Due to long read lengths, the PacBio RS data could be accurately assembled.


June 1, 2021  |  

Harnessing kinetic information in Single-Molecule, Real-Time Sequencing.

Single-Molecule Real-Time (SMRT) DNA sequencing is unique in that nucleotide incorporation events are monitored in real time, leading to a wealth of kinetic information in addition to the extraction of the primary DNA sequence. The dynamics of the DNA polymerase that is observed adds an additional dimension of sequence-dependent information, and can be used to learn more about the molecule under study. First, the primary sequence itself can be determined more accurately. The kinetic data can be used to corroborate or overturn consensus calls and even enable calling bases in problematic sequence contexts. Second, using the kinetic information, we can detect and discriminate numerous chemical base modifications as a by-product of ordinary sequencing. Examples of applying these capabilities include (i) the characterization of the epigenome of microorganisms by directly sequencing the three common prokaryotic epigenetic base modifications of 4-methylcytosine, 5- methylcytosine and 6-methyladenine; (ii) the characterization of known and novel methyltransferase activities; (iii) the direct sequencing and differentiation of the four eukaryotic epigenetic forms of cytosine (5-methyl, 5-hydroxymethyl, 5-formyl, and 5-carboxylcytosine) with first applications to map them with single base-pair and DNA strand resolution across mammalian genomes; (iv) the direct sequencing and identification of numerous modified DNA bases arising from DNA damage; and (v) an exploration of the mitochondrial genome for known and novel base modifications. We will show our progress towards a generic, open-source algorithm for exploiting kinetic information for any of these purposes.


June 1, 2021  |  

Comparative genomics of Shiga toxin-producing Escherichia coli O145:H28 strains associated with the 2007 Belgium and 2010 US outbreaks.

Shiga toxin-producing Escherichia coli (STEC) is an emerging pathogen. Recently there has been a global in the number of outbreaks caused by non-O157 STECs, typically involving six serogroups O26, O45, 0103, 0111, and 0145. STEC O145:H28 has been associated with severe human disease including hemolytic-uremic syndrome (HUS), and is demonstrated by the 2007 Belgian ice-cream-associated outbreak and 2010 US lettuce-associated outbreak, with over 10% of patients developing HUS in each. The goal of this work was to do comparative genomics of strains, clinical and environmental, to investigate genome diversity and virulence evolution of this important foodborne pathogen.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.