Menu
July 7, 2019  |  

Clustering of circular consensus sequences: accurate error correction and assembly of single molecule real-time reads from multiplexed amplicon libraries.

Targeted resequencing with high-throughput sequencing (HTS) platforms can be used to efficiently interrogate the genomes of large numbers of individuals. A critical issue for research and applications using HTS data, especially from long-read platforms, is error in base calling arising from technological limits and bioinformatic algorithms. We found that the community standard long amplicon analysis (LAA) module from Pacific Biosciences is prone to substantial bioinformatic errors that raise concerns about findings based on this pipeline, prompting the need for a new method.A single molecule real-time (SMRT) sequencing-error correction and assembly pipeline, C3S-LAA, was developed for libraries of pooled amplicons. By uniquely leveraging the structure of SMRT sequence data (comprised of multiple low quality subreads from which higher quality circular consensus sequences are formed) to cluster raw reads, C3S-LAA produced accurate consensus sequences and assemblies of overlapping amplicons from single sample and multiplexed libraries. In contrast, despite read depths in excess of 100X per amplicon, the standard long amplicon analysis module from Pacific Biosciences generated unexpected numbers of amplicon sequences with substantial inaccuracies in the consensus sequences. A bootstrap analysis showed that the C3S-LAA pipeline per se was effective at removing bioinformatic sources of error, but in rare cases a read depth of nearly 400X was not sufficient to overcome minor but systematic errors inherent to amplification or sequencing.C3S-LAA uses a divide and conquer processing algorithm for SMRT amplicon-sequence data that generates accurate consensus sequences and local sequence assemblies. Solving the confounding bioinformatic source of error in LAA allowed for the identification of limited instances of errors due to DNA amplification or sequencing of homopolymeric nucleotide tracts. For research and development in genomics, C3S-LAA allows meaningful conclusions and biological inferences to be made from accurately polished sequence output.


July 7, 2019  |  

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes.

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We found that all haloalkaliphilic strains contain the mrpB gene coding for the B subunit of the MRP Na+/H+ antiporter, while this gene is absent in all non-alkaliphilic strains, which indicates its importance for adaptation to high pH. Further analysis showed that alga05 requires organic carbon sources for growth, but it also contains genes encoding the ethylmalonyl-CoA pathway for CO2 fixation. Remarkable is the genetic potential to utilize organophosphorus compounds as a source of phosphorus. In summary, its genetic inventory indicates a large flexibility of the alga05 metabolism, which is advantageous in rapidly changing environmental conditions in soda lakes.


July 7, 2019  |  

Complete and assembled genome sequence of an NDM-5- and CTX-M-15-producing Escherichia coli sequence type 617 isolated from wastewater in Switzerland.

Carbapenem-resistant Escherichia coli have emerged worldwide and represent a major challenge to effective healthcare management. Here we report the genome sequence of an NDM-5- and CTX-M-15-producing E. coli belonging to sequence type 617 isolated from wastewater treatment plant effluent in Switzerland.Whole-genome sequencing of E. coli 657SK2 was performed using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology RS2 reads (C4/P6 chemistry). De novo assembly was carried out using Canu 1.6, and sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).The genome of E. coli 657SK2 consists of a 4.9-Mbp chromosome containing blaCTX-M-15, genes associated with virulence [fyuA, hlyE, the pyelonephritis-associated pili (pap) gene cluster and the yad gene cluster], the copper resistance gene pco, and genes associated with resistance to quaternary ammonium compound (QAC) disinfectants (emrA, mdfA and sugE). A 173.9-kb multidrug resistance IncFII-FIA-FIB plasmid was detected harbouring aadA2, aadA5, blaNDM-5, blaOXA-1, cat, drfA, drfA17, the mph(A)-mrx-mphR cluster, the tetA-tetC-tetR cluster, and the virulence genes iutA and ylpA.The genome sequence of E. coli 657SK2 provides information on resistance mechanisms and virulence characteristics of pathogenic E. coli harbouring blaNDM-5 and blaCTX-M-15 that are spreading into the environment via urban wastewater.Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Moraxella bovis strain Epp-63 (300), an etiologic agent of infectious bovine keratoconjunctivitis.

We report here the complete closed genome sequence of Moraxella bo- vis strain Epp-63 (300) (Epp63). This strain was isolated from an infectious bovine keratoconjunctivitis (IBK) case in 1963. Since then, Epp63 has been used extensively for IBK research. Consequently, the genome sequence of Epp63 should help eluci- date IBK host-pathogen interactions.


July 7, 2019  |  

Complete genome sequence of herpes simplex virus 2 strain 333.

Herpes simplex virus 2, or human herpesvirus 2, is a ubiquitous human pathogen that causes genital ulcerations and establishes latency in sacral root ganglia. We fully sequenced and manually curated the viral genome sequence of herpes simplex virus 2, strain 333 using Pacific Biosciences and Illumina sequencing technologies.


July 7, 2019  |  

Picky comprehensively detects high-resolution structural variants in nanopore long reads.

Acquired genomic structural variants (SVs) are major hallmarks of cancer genomes, but they are challenging to reconstruct from short-read sequencing data. Here we exploited the long reads of the nanopore platform using our customized pipeline, Picky ( https://github.com/TheJacksonLaboratory/Picky ), to reveal SVs of diverse architecture in a breast cancer model. We identified the full spectrum of SVs with superior specificity and sensitivity relative to short-read analyses, and uncovered repetitive DNA as the major source of variation. Examination of genome-wide breakpoints at nucleotide resolution uncovered micro-insertions as the common structural features associated with SVs. Breakpoint density across the genome is associated with the propensity for interchromosomal connectivity and was found to be enriched in promoters and transcribed regions of the genome. Furthermore, we observed an over-representation of reciprocal translocations from chromosomal double-crossovers through phased SVs. We demonstrate that Picky analysis is an effective tool for comprehensive detection of SVs in cancer genomes from long-read data.


July 7, 2019  |  

Small- and Large-Scale High Molecular Weight Genomic DNA Extraction from Planarians.

High-quality genomic DNA extraction is a starting point for many downstream applications in modern molecular biology. Here, we describe a simple method for isolating high molecular weight genomic DNA from planarians. The method is based on tissue lysis by a mixture of a chaotropic salt and detergent followed by organic extraction to remove proteins and lipids followed by a postpurification step to remove contaminating polysaccharides. The isolated DNA is of high molecular weight and compatible with polymerase chain reaction, cloning, or next-generation sequencing library preparation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.