April 21, 2020  |  

Complete Genome Sequence of the Wolbachia wAlbB Endosymbiont of Aedes albopictus.

Wolbachia, an alpha-proteobacterium closely related to Rickettsia, is a maternally transmitted, intracellular symbiont of arthropods and nematodes. Aedes albopictus mosquitoes are naturally infected with Wolbachia strains wAlbA and wAlbB. Cell line Aa23 established from Ae. albopictus embryos retains only wAlbB and is a key model to study host-endosymbiont interactions. We have assembled the complete circular genome of wAlbB from the Aa23 cell line using long-read PacBio sequencing at 500× median coverage. The assembled circular chromosome is 1.48 megabases in size, an increase of more than 300 kb over the published draft wAlbB genome. The annotation of the genome identified 1,205 protein coding genes, 34 tRNA, 3 rRNA, 1 tmRNA, and 3 other ncRNA loci. The long reads enabled sequencing over complex repeat regions which are difficult to resolve with short-read sequencing. Thirteen percent of the genome comprised insertion sequence elements distributed throughout the genome, some of which cause pseudogenization. Prophage WO genes encoding some essential components of phage particle assembly are missing, while the remainder are found in five prophage regions/WO-like islands or scattered around the genome. Orthology analysis identified a core proteome of 535 orthogroups across all completed Wolbachia genomes. The majority of proteins could be annotated using Pfam and eggNOG analyses, including ankyrins and components of the Type IV secretion system. KEGG analysis revealed the absence of five genes in wAlbB which are present in other Wolbachia. The availability of a complete circular chromosome from wAlbB will enable further biochemical, molecular, and genetic analyses on this strain and related Wolbachia. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


September 22, 2019  |  

An environmental bacterial taxon with a large and distinct metabolic repertoire.

Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such ‘talented’ producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus ‘Entotheonella’ with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. ‘Entotheonella’ spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum ‘Tectomicrobia’. The pronounced bioactivities and chemical uniqueness of ‘Entotheonella’ compounds provide significant opportunities for ecological studies and drug discovery.


September 22, 2019  |  

Evolution of selective-sequencing approaches for virus discovery and virome analysis.

Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

MetaSort untangles metagenome assembly by reducing microbial community complexity.

Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities.


September 22, 2019  |  

Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq.

Parallel sequencing of a single cell’s genome and transcriptome provides a powerful tool for dissecting genetic variation and its relationship with gene expression. Here we present a detailed protocol for G&T-seq, a method for separation and parallel sequencing of genomic DNA and full-length polyA(+) mRNA from single cells. We provide step-by-step instructions for the isolation and lysis of single cells; the physical separation of polyA(+) mRNA from genomic DNA using a modified oligo-dT bead capture and the respective whole-transcriptome and whole-genome amplifications; and library preparation and sequence analyses of these amplification products. The method allows the detection of thousands of transcripts in parallel with the genetic variants captured by the DNA-seq data from the same single cell. G&T-seq differs from other currently available methods for parallel DNA and RNA sequencing from single cells, as it involves physical separation of the DNA and RNA and does not require bespoke microfluidics platforms. The process can be implemented manually or through automation. When performed manually, paired genome and transcriptome sequencing libraries from eight single cells can be produced in ~3 d by researchers experienced in molecular laboratory work. For users with experience in the programming and operation of liquid-handling robots, paired DNA and RNA libraries from 96 single cells can be produced in the same time frame. Sequence analysis and integration of single-cell G&T-seq DNA and RNA data requires a high level of bioinformatics expertise and familiarity with a wide range of informatics tools.


September 22, 2019  |  

Next-generation sequencing for pathogen detection and identification

Over the past decade, the field of genomics has seen such drastic improvements in sequencing chemistries that high-throughput sequencing, or next-generation sequencing (NGS), is being applied to generate data across many disciplines. NGS instruments are becoming less expensive, faster, and smaller, and therefore are being adopted in an increasing number of laboratories, including clinical laboratories. Thus far, clinical use of NGS has been mostly focused on the human genome, for purposes such as characterizing the molecular basis of cancer or for diagnosing and understanding the basis of rare genetic disorders. There are, however, an increasing number of examples whereby NGS is employed to discover novel pathogens, and these cases provide precedent for the use of NGS in microbial diagnostics. NGS has many advantages over traditional microbial diagnostic methods, such as unbiased rather than pathogen-specific protocols, ability to detect fastidious or non-culturable organisms, and ability to detect co-infections. One of the most impressive advantages of NGS is that it requires little or no prior knowledge of the pathogen, unlike many other diagnostic assays; therefore for pathogen discovery, NGS is very valuable. However, despite these advantages, there are challenges involved in implementing NGS for routine clinical microbiological diagnosis. We discuss these advantages and challenges in the context of recently described research studies.


September 22, 2019  |  

G&T-seq: parallel sequencing of single-cell genomes and transcriptomes.

The simultaneous sequencing of a single cell’s genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


September 22, 2019  |  

Single cell genomic study of Dehalococcoidetes species from deep-sea sediments of the Peruvian Margin.

The phylum Chloroflexi is one of the most frequently detected phyla in the subseafloor of the Pacific Ocean margins. Dehalogenating Chloroflexi (Dehalococcoidetes) was originally discovered as the key microorganisms mediating reductive dehalogenation via their key enzymes reductive dehalogenases (Rdh) as sole mode of energy conservation in terrestrial environments. The frequent detection of Dehalococcoidetes-related 16S rRNA and rdh genes in the marine subsurface implies a role for dissimilatory dehalorespiration in this environment; however, the two genes have never been linked to each other. To provide fundamental insights into the metabolism, genomic population structure and evolution of marine subsurface Dehalococcoidetes sp., we analyzed a non-contaminated deep-sea sediment core sample from the Peruvian Margin Ocean Drilling Program (ODP) site 1230, collected 7.3?m below the seafloor by a single cell genomic approach. We present for the first time single cell genomic data on three deep-sea Chloroflexi (Dsc) single cells from a marine subsurface environment. Two of the single cells were considered to be part of a local Dehalococcoidetes population and assembled together into a 1.38-Mb genome, which appears to be at least 85% complete. Despite a high degree of sequence-level similarity between the shared proteins in the Dsc and terrestrial Dehalococcoidetes, no evidence for catabolic reductive dehalogenation was found in Dsc. The genome content is however consistent with a strictly anaerobic organotrophic or lithotrophic lifestyle.


September 22, 2019  |  

Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres.

Marine Group I (MGI) Thaumarchaeota are one of the most abundant and cosmopolitan chemoautotrophs within the global dark ocean. To date, no representatives of this archaeal group retrieved from the dark ocean have been successfully cultured. We used single cell genomics to investigate the genomic and metabolic diversity of thaumarchaea within the mesopelagic of the subtropical North Pacific and South Atlantic Ocean. Phylogenetic and metagenomic recruitment analysis revealed that MGI single amplified genomes (SAGs) are genetically and biogeographically distinct from existing thaumarchaea cultures obtained from surface waters. Confirming prior studies, we found genes encoding proteins for aerobic ammonia oxidation and the hydrolysis of urea, which may be used for energy production, as well as genes involved in 3-hydroxypropionate/4-hydroxybutyrate and oxidative tricarboxylic acid pathways. A large proportion of protein sequences identified in MGI SAGs were absent in the marine cultures Cenarchaeum symbiosum and Nitrosopumilus maritimus, thus expanding the predicted protein space for this archaeal group. Identifiable genes located on genomic islands with low metagenome recruitment capacity were enriched in cellular defense functions, likely in response to viral infections or grazing. We show that MGI Thaumarchaeota in the dark ocean may have more flexibility in potential energy sources and adaptations to biotic interactions than the existing, surface-ocean cultures.


September 22, 2019  |  

Defining cell identity with single cell omics.

Cells are a fundamental unit of life, and the ability to study the phenotypes and behaviors of individual cells is crucial to understanding the workings of complex biological systems. Cell phenotypes (epigenomic, transcriptomic, proteomic, and metabolomic) exhibit dramatic heterogeneity between and within the different cell types and states underlying cellular functional diversity. Cell genotypes can also display heterogeneity throughout an organism, in the form of somatic genetic variation-most notably in the emergence and evolution of tumors. Recent technical advances in single-cell isolation and the development of omics approaches sensitive enough to reveal these aspects of cell identity have enabled a revolution in the study of multicellular systems. In this review, we discuss the technologies available to resolve the genomes, epigenomes, transcriptomes, proteomes, and metabolomes of single cells from a wide variety of living systems.© 2018 The Authors. Proteomics Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019  |  

Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations.

Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.


September 22, 2019  |  

Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome.

Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms. Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been empirically tested.Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage genomes.MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics, amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.


September 22, 2019  |  

A single-cell genome for Thiovulum sp.

We determined a significant fraction of the genome sequence of a representative of Thiovulum, the uncultivated genus of colorless sulfur Epsilonproteobacteria, by analyzing the genome sequences of four individual cells collected from phototrophic mats from Elkhorn Slough, California. These cells were isolated utilizing a microfluidic laser-tweezing system, and their genomes were amplified by multiple-displacement amplification prior to sequencing. Thiovulum is a gradient bacterium found at oxic-anoxic marine interfaces and noted for its distinctive morphology and rapid swimming motility. The genomic sequences of the four individual cells were assembled into a composite genome consisting of 221 contigs covering 2.083 Mb including 2,162 genes. This single-cell genome represents a genomic view of the physiological capabilities of isolated Thiovulum cells. Thiovulum is the second-fastest bacterium ever observed, swimming at 615 µm/s, and this genome shows that this rapid swimming motility is a result of a standard flagellar machinery that has been extensively characterized in other bacteria. This suggests that standard flagella are capable of propelling bacterial cells at speeds much faster than typically thought. Analysis of the genome suggests that naturally occurring Thiovulum populations are more diverse than previously recognized and that studies performed in the past probably address a wide range of unrecognized genotypic and phenotypic diversities of Thiovulum. The genome presented in this article provides a basis for future isolation-independent studies of Thiovulum, where single-cell and metagenomic tools can be used to differentiate between different Thiovulum genotypes.


September 22, 2019  |  

Metagenomic approaches to assess bacteriophages in various environmental niches.

Bacteriophages are ubiquitous and numerous parasites of bacteria and play a critical evolutionary role in virtually every ecosystem, yet our understanding of the extent of the diversity and role of phages remains inadequate for many ecological niches, particularly in cases in which the host is unculturable. During the past 15 years, the emergence of the field of viral metagenomics has drastically enhanced our ability to analyse the so-called viral ‘dark matter’ of the biosphere. Here, we review the evolution of viral metagenomic methodologies, as well as providing an overview of some of the most significant applications and findings in this field of research.


September 22, 2019  |  

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.