Menu
July 19, 2019

Biomonitoring for traditional herbal medicinal products using DNA metabarcoding and single molecule, real-time sequencing.

Global concerns have been paid to the potential hazard of traditional herbal medicinal products (THMPs). Substandard and counterfeit THMPs, including traditional Chinese patent medicine, health foods, dietary supplements, etc. are potential threats to public health. Recent marketplace studies using DNA barcoding have determined that the current quality control methods are not sufficient for ensuring the presence of authentic herbal ingredients and detection of contaminants/adulterants. An efficient biomonitoring method for THMPs is of great needed. Herein, metabarcoding and single-molecule, real-time (SMRT) sequencing were used to detect the multiple ingredients in Jiuwei Qianghuo Wan (JWQHW), a classical herbal prescription widely used in China for the last 800 years. Reference experimental mixtures and commercial JWQHW products from the marketplace were used to confirm the method. Successful SMRT sequencing results recovered 5416 and 4342 circular-consensus sequencing (CCS) reads belonging to the ITS2 and psbA-trnH regions. The results suggest that with the combination of metabarcoding and SMRT sequencing, it is repeatable, reliable, and sensitive enough to detect species in the THMPs, and the error in SMRT sequencing did not affect the ability to identify multiple prescribed species and several adulterants/contaminants. It has the potential for becoming a valuable tool for the biomonitoring of multi-ingredient THMPs.


July 19, 2019

Piercing the dark matter: bioinformatics of long-range sequencing and mapping.

Several new genomics technologies have become available that offer long-read sequencing or long-range mapping with higher throughput and higher resolution analysis than ever before. These long-range technologies are rapidly advancing the field with improved reference genomes, more comprehensive variant identification and more complete views of transcriptomes and epigenomes. However, they also require new bioinformatics approaches to take full advantage of their unique characteristics while overcoming their complex errors and modalities. Here, we discuss several of the most important applications of the new technologies, focusing on both the currently available bioinformatics tools and opportunities for future research.


July 19, 2019

Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants.


July 19, 2019

The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms.

The planarian Schmidtea mediterranea is an important model for stem cell research and regeneration, but adequate genome resources for this species have been lacking. Here we report a highly contiguous genome assembly of S. mediterranea, using long-read sequencing and a de novo assembler (MARVEL) enhanced for low-complexity reads. The S. mediterranea genome is highly polymorphic and repetitive, and harbours a novel class of giant retroelements. Furthermore, the genome assembly lacks a number of highly conserved genes, including critical components of the mitotic spindle assembly checkpoint, but planarians maintain checkpoint function. Our genome assembly provides a key model system resource that will be useful for studying regeneration and the evolutionary plasticity of core cell biological mechanisms.


July 19, 2019

Survey on the use of whole-genome sequencing for infectious diseases surveillance: Rapid expansion of European national capacities, 2015-2016.

Whole-genome sequencing (WGS) has become an essential tool for public health surveillance and molecular epidemiology of infectious diseases and antimicrobial drug resistance. It provides precise geographical delineation of spread and enables incidence monitoring of pathogens at genotype level. Coupled with epidemiological and environmental investigations, it delivers ultimate resolution for tracing sources of epidemic infections. To ascertain the level of implementation of WGS-based typing for national public health surveillance and investigation of prioritized diseases in the European Union (EU)/European Economic Area (EEA), two surveys were conducted in 2015 and 2016. The surveys were designed to determine the national public health reference laboratories’ access to WGS and operational WGS-based typing capacity for national surveillance of selected foodborne pathogens, antimicrobial-resistant pathogens, and vaccine-preventable diseases identified as priorities for European genomic surveillance. Twenty-eight and twenty-nine out of the 30 EU/EEA countries participated in the survey in 2015 and 2016, respectively. National public health reference laboratories in 22 and 25 countries had access to WGS-based typing for public health applications in 2015 and 2016, respectively. Reported reasons for limited or no access were lack of funding, staff, and expertise. Illumina technology was the most frequently used followed by Ion Torrent technology. The access to bioinformatics expertise and competence for routine WGS data analysis was limited. By mid-2016, half of the EU/EEA countries were using WGS analysis either as first- or second-line typing method for surveillance of the pathogens and antibiotic resistance issues identified as EU priorities. The sampling frame as well as bioinformatics analysis varied by pathogen/resistance issue and country. Core genome multilocus allelic profiling, also called cgMLST, was the most frequently used annotation approach for typing bacterial genomes suggesting potential bioinformatics pipeline compatibility. Further capacity development for WGS-based typing is ongoing in many countries and upon consolidation and harmonization of methods should enable pan-EU data exchange for genomic surveillance in the medium-term subject to the development of suitable data management systems and appropriate agreements for data sharing.


July 19, 2019

The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity.Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel.Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain’s genetic profile from pathogenic to environmental.


July 19, 2019

Extreme sensitivity to ultraviolet light in the fungal pathogen causing white-nose syndrome of bats.

Bat white-nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, has decimated North American hibernating bats since its emergence in 2006. Here, we utilize comparative genomics to examine the evolutionary history of this pathogen in comparison to six closely related nonpathogenic species. P. destructans displays a large reduction in carbohydrate-utilizing enzymes (CAZymes) and in the predicted secretome (~50%), and an increase in lineage-specific genes. The pathogen has lost a key enzyme, UVE1, in the alternate excision repair (AER) pathway, which is known to contribute to repair of DNA lesions induced by ultraviolet (UV) light. Consistent with a nonfunctional AER pathway, P. destructans is extremely sensitive to UV light, as well as the DNA alkylating agent methyl methanesulfonate (MMS). The differential susceptibility of P. destructans to UV light in comparison to other hibernacula-inhabiting fungi represents a potential “Achilles’ heel” of P. destructans that might be exploited for treatment of bats with WNS.


July 19, 2019

Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi.

Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi’s genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.


July 19, 2019

Advances in Sequencing and Resequencing in Crop Plants.

DNA sequencing technologies have changed the face of biological research over the last 20 years. From reference genomes to population level resequencing studies, these technologies have made significant contributions to our understanding of plant biology and evolution. As the technologies have increased in power, the breadth and complexity of the questions that can be asked has increased. Along with this, the challenges of managing unprecedented quantities of sequence data are mounting. This chapter describes a few aspects of the journey so far and looks forward to what may lie ahead.


July 19, 2019

Utility of DNA, RNA, protein, and functional approaches to solve cryptic immunodeficiencies.

We report a female infant identified by newborn screening for severe combined immunodeficiencies (NBS SCID) with T cell lymphopenia (TCL). The patient had persistently elevated alpha-fetoprotein (AFP) with IgA deficiency, and elevated IgM. Gene sequencing for a SCID panel was uninformative. We sought to determine the cause of the immunodeficiency in this infant.We performed whole-exome sequencing (WES) on the patient and parents to identify a genetic diagnosis. Based on the WES result, we developed a novel flow cytometric panel for rapid assessment of DNA repair defects using blood samples. We also performed whole transcriptome sequencing (WTS) on fibroblast RNA from the patient and father for abnormal transcript analysis.WES revealed a pathogenic paternally inherited indel in ATM. We used the flow panel to assess several proteins in the DNA repair pathway in lymphocyte subsets. The patient had absent phosphorylation of ATM, resulting in absent or aberrant phosphorylation of downstream proteins, including ?H2AX. However, ataxia-telangiectasia (AT) is an autosomal recessive condition, and the abnormal functional data did not correspond with a single ATM variant. WTS revealed in-frame reciprocal fusion transcripts involving ATM and SLC35F2 indicating a chromosome 11 inversion within 11q22.3, of maternal origin. Inversion breakpoints were identified within ATM intron 16 and SLC35F2 intron 7.We identified a novel ATM-breaking chromosome 11 inversion in trans with a pathogenic indel (compound heterozygote) resulting in non-functional ATM protein, consistent with a diagnosis of AT. Utilization of several molecular and functional assays allowed successful resolution of this case.


July 19, 2019

The Florida manatee (Trichechus manatus latirostris) T cell receptor loci exhibit V subgroup synteny and chain-specific evolution.

The Florida manatee (Trichechus manatus latirostris) has limited diversity in the immunoglobulin heavy chain. We therefore investigated the antigen receptor loci of the other arm of the adaptive immune system: the T cell receptor. Manatees are the first species from Afrotheria, a basal eutherian superorder, to have an in-depth characterization of all T cell receptor loci. By annotating the genome and expressed transcripts, we found that each chain has distinct features that correlates to their individual functions. The genomic organization also plays a role in modulating sequence conservation between species. There were extensive V subgroup synteny blocks in the TRA and TRB loci between T. m. latirostris and human. Increased genomic locus complexity correlated to increased locus synteny. We also identified evidence for a VHD pseudogene for the first time in a eutherian mammal. These findings emphasize the value of including species within this basal eutherian radiation in comparative studies. Copyright © 2018. Published by Elsevier Ltd.


July 19, 2019

HIV envelope glycoform heterogeneity and localized diversity govern the initiation and maturation of a V2 apex broadly neutralizing antibody lineage.

Understanding how broadly neutralizing antibodies (bnAbs) to HIV envelope (Env) develop during natural infection can help guide the rational design of an HIV vaccine. Here, we described a bnAb lineage targeting the Env V2 apex and the Ab-Env co-evolution that led to development of neutralization breadth. The lineage Abs bore an anionic heavy chain complementarity-determining region 3 (CDRH3) of 25 amino acids, among the shortest known for this class of Abs, and achieved breadth with only 10% nucleotide somatic hypermutation and no insertions or deletions. The data suggested a role for Env glycoform heterogeneity in the activation of the lineage germline B cell. Finally, we showed that localized diversity at key V2 epitope residues drove bnAb maturation toward breadth, mirroring the Env evolution pattern described for another donor who developed V2-apex targeting bnAbs. Overall, these findings suggest potential strategies for vaccine approaches based on germline-targeting and serial immunogen design. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.


July 19, 2019

Genome sequence of the progenitor of wheat A subgenome Triticum urartu.

Triticum urartu (diploid, AA) is the progenitor of the A subgenome of tetraploid (Triticum turgidum, AABB) and hexaploid (Triticum aestivum, AABBDD) wheat1,2. Genomic studies of T. urartu have been useful for investigating the structure, function and evolution of polyploid wheat genomes. Here we report the generation of a high-quality genome sequence of T. urartu by combining bacterial artificial chromosome (BAC)-by-BAC sequencing, single molecule real-time whole-genome shotgun sequencing 3 , linked reads and optical mapping4,5. We assembled seven chromosome-scale pseudomolecules and identified protein-coding genes, and we suggest a model for the evolution of T. urartu chromosomes. Comparative analyses with genomes of other grasses showed gene loss and amplification in the numbers of transposable elements in the T. urartu genome. Population genomics analysis of 147 T. urartu accessions from across the Fertile Crescent showed clustering of three groups, with differences in altitude and biostress, such as powdery mildew disease. The T. urartu genome assembly provides a valuable resource for studying genetic variation in wheat and related grasses, and promises to facilitate the discovery of genes that could be useful for wheat improvement.


July 19, 2019

Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma.

To understand how genomic heterogeneity of glioblastoma (GBM) contributes to poor therapy response, we performed DNA and RNA sequencing on GBM samples and the neurospheres and orthotopic xenograft models derived from them. We used the resulting dataset to show that somatic driver alterations including single-nucleotide variants, focal DNA alterations and oncogene amplification on extrachromosomal DNA (ecDNA) elements were in majority propagated from tumor to model systems. In several instances, ecDNAs and chromosomal alterations demonstrated divergent inheritance patterns and clonal selection dynamics during cell culture and xenografting. We infer that ecDNA was unevenly inherited by offspring cells, a characteristic that affects the oncogenic potential of cells with more or fewer ecDNAs. Longitudinal patient tumor profiling found that oncogenic ecDNAs are frequently retained throughout the course of disease. Our analysis shows that extrachromosomal elements allow rapid increase of genomic heterogeneity during GBM evolution, independently of chromosomal DNA alterations.


July 19, 2019

Genomic variation in 3,010 diverse accessions of Asian cultivated rice.

Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.