Menu
September 22, 2019  |  

Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites.

Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Côte d’Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally. Copyright © 2018 the Author(s). Published by PNAS.


September 22, 2019  |  

Genome analyses of the microalga Picochlorum provide insights into the evolution of thermotolerance in the green lineage.

While the molecular events involved in cell responses to heat stress have been extensively studied, our understanding of the genetic basis of basal thermotolerance, and particularly its evolution within the green lineage, remains limited. Here, we present the 13.3-Mb haploid genome and transcriptomes of a halotolerant and thermotolerant unicellular green alga, Picochlorum costavermella (Trebouxiophyceae) to investigate the evolution of the genomic basis of thermotolerance. Differential gene expression at high and standard temperatures revealed that more of the gene families containing up-regulated genes at high temperature were recently evolved, and less originated at the ancestor of green plants. Inversely, there was an excess of ancient gene families containing transcriptionally repressed genes. Interestingly, there is a striking overlap between the thermotolerance and halotolerance transcriptional rewiring, as more than one-third of the gene families up-regulated at 35?°C were also up-regulated under variable salt concentrations in Picochlorum SE3. Moreover, phylogenetic analysis of the 9,304 protein coding genes revealed 26 genes of horizontally transferred origin in P. costavermella, of which five were differentially expressed at higher temperature. Altogether, these results provide new insights about how the genomic basis of adaptation to halo- and thermotolerance evolved in the green lineage.


September 22, 2019  |  

The linear mitochondrial genome of the quarantine chytrid Synchytrium endobioticum; insights into the evolution and recent history of an obligate biotrophic plant pathogen.

Chytridiomycota species (chytrids) belong to a basal lineage in the fungal kingdom. Inhabiting terrestrial and aquatic environments, most are free-living saprophytes but several species cause important diseases: e.g. Batrachochytrium dendrobatidis, responsible for worldwide amphibian decline; and Synchytrium endobioticum, causing potato wart disease. S. endobioticum has an obligate biotrophic lifestyle and isolates can be further characterized as pathotypes based on their virulence on a differential set of potato cultivars. Quarantine measures have been implemented globally to control the disease and prevent its spread. We used a comparative approach using chytrid mitogenomes to determine taxonomical relationships and to gain insights into the evolution and recent history of introductions of this plant pathogen.We assembled and annotated the complete mitochondrial genome of 30 S. endobioticum isolates and generated mitochondrial genomes for five additional chytrid species. The mitochondrial genome of S. endobioticum is linear with terminal inverted repeats which was validated by tailing and PCR amplifying the telomeric ends. Surprisingly, no conservation in organisation and orientation of mitochondrial genes was observed among the Chytridiomycota except for S. endobioticum and its sister species Synchytrium microbalum. However, the mitochondrial genome of S. microbalum is circular and comprises only a third of the 72.9 Kbp found for S. endobioticum suggesting recent linearization and expansion. Four mitochondrial lineages were identified in the S. endobioticum mitochondrial genomes. Several pathotypes occur in different lineages, suggesting that these have emerged independently. In addition, variations for polymorphic sites in the mitochondrial genome of individual isolates were observed demonstrating that S. endobioticum isolates represent a community of different genotypes. Such communities were shown to be complex and stable over time, but we also demonstrate that the use of semi-resistant potato cultivars triggers a rapid shift in the mitochondrial haplotype associated with increased virulence.Mitochondrial genomic variation shows that S. endobioticum has been introduced into Europe multiple times, that several pathotypes emerged multiple times, and that isolates represent communities of different genotypes. Our study represents the most comprehensive dataset of chytrid mitogenomes, which provides new insights into the extraordinary dynamics and evolution of mitochondrial genomes involving linearization, expansion and reshuffling.


September 22, 2019  |  

Exploring the limits and causes of plastid genome expansion in volvocine green algae.

Plastid genomes are not normally celebrated for being large. But researchers are steadily uncovering algal lineages with big and, in rare cases, enormous plastid DNAs (ptDNAs), such as volvocine green algae. Plastome sequencing of five different volvocine species has revealed some of the largest, most repeat-dense plastomes on record, including that of Volvox carteri (~525?kb). Volvocine algae have also been used as models for testing leading hypotheses on organelle genome evolution (e.g., the mutational hazard hypothesis), and it has been suggested that ptDNA inflation within this group might be a consequence of low mutation rates and/or the transition from a unicellular to multicellular existence. Here, we further our understanding of plastome size variation in the volvocine line by examining the ptDNA sequences of the colonial species Yamagishiella unicocca and Eudorina sp. NIES-3984 and the multicellular Volvox africanus, which are phylogenetically situated between species with known ptDNA sizes. Although V. africanus is closely related and similar in multicellular organization to V. carteri, its ptDNA was much less inflated than that of V. carteri. Synonymous- and noncoding-site nucleotide substitution rate analyses of these two Volvox ptDNAs suggest that there are drastically different plastid mutation rates operating in the coding versus intergenic regions, supporting the idea that error-prone DNA repair in repeat-rich intergenic spacers is contributing to genome expansion. Our results reinforce the idea that the volvocine line harbors extremes in plastome size but ultimately shed doubt on some of the previously proposed hypotheses for ptDNA inflation within the lineage.


September 22, 2019  |  

Genome-wide analysis of Borrelia turcica and ‘Candidatus Borrelia tachyglossi’ shows relapsing fever-like genomes with unique genomic links to Lyme disease Borrelia.

Borrelia are tick-borne bacteria that in humans are the aetiological agents of Lyme disease and relapsing fever. Here we present the first genomes of B. turcica and B. tachyglossi, members of a recently described and rapidly expanding Borrelia clade associated with reptile (B. turcica) or echidna (B. tachyglossi) hosts, transmitted by hard ticks, and of unknown pathogenicity. Borrelia tachyglossi and B. turcica genomes are similar to those of relapsing fever Borrelia species, containing a linear ~ 900?kb chromosome, a single long (> 70?kb) linear plasmid, and numerous short (< 40?kb) linear and circular plasmids, as well as a suite of housekeeping and macronutrient biosynthesis genes which are not found in Lyme disease Borrelia. Additionally, both B. tachyglossi and B. turcica contain paralogous vsp and vlp proteins homologous to those used in the multiphasic antigen-switching system used by relapsing fever Borrelia to evade vertebrate immune responses, although their number was greatly reduced compared to human-infectious species. However, B. tachyglossi and B. turcica chromosomes also contain numerous genes orthologous to Lyme disease Borrelia-specific genes, demonstrating a unique evolutionary, and potentially phenotypic link between these groups. Borrelia tachyglossi and B. turcica genomes also have unique genetic features, including degraded and deleted tRNA modification genes, and an expanded range of macronutrient salvage and biosynthesis genes compared to relapsing fever and Lyme disease Borrelia. These genomes and genomic comparisons provide an insight into the biology and evolutionary origin of these Borrelia, and provide a valuable resource for future work. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Comparison of the mitochondrial genome sequences of six Annulohypoxylon stygium isolates suggests short fragment insertions as a potential factor leading to larger genomic size.

Mitochondrial DNA (mtDNA) is a core non-nuclear genetic material found in all eukaryotic organisms, the size of which varies extensively in the eumycota, even within species. In this study, mitochondrial genomes of six isolates of Annulohypoxylon stygium (Lév.) were assembled from raw reads from PacBio and Illumina sequencing. The diversity of genomic structures, conserved genes, intergenic regions and introns were analyzed and compared. Genome sizes ranged from 132 to 147 kb and contained the same sets of conserved protein-coding, tRNA and rRNA genes and shared the same gene arrangements and orientation. In addition, most intergenic regions were homogeneous and had similar sizes except for the region between cytochrome b (cob) and cytochrome c oxidase I (cox1) genes which ranged from 2,998 to 8,039 bp among the six isolates. Sixty-five intron insertion sites and 99 different introns were detected in these genomes. Each genome contained 45 or more introns, which varied in distribution and content. Introns from homologous insertion sites also showed high diversity in size, type and content. Comparison of introns at the same loci showed some complex introns, such as twintrons and ORF-less introns. There were 44 short fragment insertions detected within introns, intergenic regions, or as introns, some of them located at conserved domain regions of homing endonuclease genes. Insertions of short fragments such as small inverted repeats might affect or hinder the movement of introns, and these allowed for intron accumulation in the mitochondrial genomes analyzed, and enlarged their size. This study showed that the evolution of fungal mitochondrial introns is complex, and the results suggest short fragment insertions as a potential factor leading to larger mitochondrial genomes in A. stygium.


September 22, 2019  |  

The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly.

Arctic charr have a circumpolar distribution, persevere under extreme environmental conditions, and reach ages unknown to most other salmonids. The Salvelinus genus is primarily composed of species with genomes that are structured more like the ancestral salmonid genome than most Oncorhynchus and Salmo species of sister genera. It is thought that this aspect of the genome may be important for local adaptation (due to increased recombination) and anadromy (the migration of fish from saltwater to freshwater). In this study, we describe the generation of a new genetic map, the sequencing and assembly of the Arctic charr genome (GenBank accession: GCF_002910315.2) using the newly created genetic map and a previous genetic map, and present several analyses of the Arctic charr genes and genome assembly. The newly generated genetic map consists of 8,574 unique genetic markers and is similar to previous genetic maps with the exception of three major structural differences. The N50, identified BUSCOs, repetitive DNA content, and total size of the Arctic charr assembled genome are all comparable to other assembled salmonid genomes. An analysis to identify orthologous genes revealed that a large number of orthologs could be identified between salmonids and many appear to have highly conserved gene expression profiles between species. Comparing orthologous gene expression profiles may give us a better insight into which genes are more likely to influence species specific phenotypes.


September 22, 2019  |  

Development and validation of 58K SNP-array and high-density linkage map in Nile tilapia (O. niloticus).

Despite being the second most important aquaculture species in the world accounting for 7.4% of global production in 2015, tilapia aquaculture has lacked genomic tools like SNP-arrays and high-density linkage maps to improve selection accuracy and accelerate genetic progress. In this paper, we describe the development of a genotyping array containing more than 58,000 SNPs for Nile tilapia (Oreochromis niloticus). SNPs were identified from whole genome resequencing of 32 individuals from the commercial population of the Genomar strain, and were selected for the SNP-array based on polymorphic information content and physical distribution across the genome using the Orenil1.1 genome assembly as reference sequence. SNP-performance was evaluated by genotyping 4991 individuals, including 689 offspring belonging to 41 full-sib families, which revealed high-quality genotype data for 43,588 SNPs. A preliminary genetic linkage map was constructed using Lepmap2 which in turn was integrated with information from the O_niloticus_UMD1 genome assembly to produce an integrated physical and genetic linkage map comprising 40,186 SNPs distributed across 22 linkage groups (LGs). Around one-third of the LGs showed a different recombination rate between sexes, with the female being greater than the male map by a factor of 1.2 (1632.9 to 1359.6 cM, respectively), with most LGs displaying a sigmoid recombination profile. Finally, the sex-determining locus was mapped to position 40.53 cM on LG23, in the vicinity of the anti-Müllerian hormone (amh) gene. These new resources has the potential to greatly influence and improve the genetic gain when applying genomic selection and surpass the difficulties of efficient selection for invasively measured traits in Nile tilapia.


September 22, 2019  |  

Antiviral adaptive immunity and tolerance in the mosquito Aedes aegyti

Mosquitoes spread pathogenic arboviruses while themselves tolerate infection. We here characterize an immunity pathway providing long-term antiviral protection and define how this pathway discriminates between self and non-self. Mosquitoes use viral RNAs to create viral derived cDNAs (vDNAs) central to the antiviral response. vDNA molecules are acquired through a process of reverse-transcription and recombination directed by endogenous retrotransposons. These vDNAs are thought to integrate in the host genome as endogenous viral elements (EVEs). Sequencing of pre-integrated vDNA revealed that the acquisition process exquisitely distinguishes viral from host RNA, providing one layer of self-nonself discrimination. Importantly, we show EVE-derived piRNAs have antiviral activity and are loaded onto Piwi4 to inhibit virus replication. In a second layer of self-non-self discrimination, Piwi4 preferentially loads EVE-derived piRNAs, discriminating against transposon-targeting piRNAs. Our findings define a fundamental virus-specific immunity pathway in mosquitoes that uses EVEs as a potent and specific antiviral transgenerational mechanism.


September 22, 2019  |  

First draft genome sequence of the rock bream in the family Oplegnathidae.

The rock bream (Oplegnathus fasciatus) is one of the most economically valuable marine fish in East Asia, and due to various environmental factors, there is substantial revenue loss in the production sector. Therefore, knowledge of its genome is required to uncover the genetic factors and the solutions to these problems. In this study, we constructed the first draft genome of O. fasciatus as a reference for the family Oplegnathidae. The genome size is estimated to be 749?Mb, and it was assembled into 766?Mb by combining Illumina and PacBio sequences. A total of 24,053 transcripts (23,338 genes) are predicted, and among those transcripts, 23,362 (97%), are annotated with functional terms. Finally, the completeness of the genome assembly was assessed by CEGMA, which resulted in the complete mapping of 220 (88.7%) core genes in the genome. To the best of our knowledge, this is the first draft genome for the family Oplegnathidae.


September 22, 2019  |  

Haematococcus lacustris: the makings of a giant-sized chloroplast genome.

Recent work on the chlamydomonadalean green alga Haematococcus lacustris uncovered the largest plastid genome on record: a whopping 1.35 Mb with >90 % non-coding DNA. A 500-word description of this genome was published in the journal Genome Announcements. But such a short report for such a large genome leaves many unanswered questions. For instance, the H. lacustris plastome was found to encode only 12 tRNAs, less than half that of a typical plastome, it appears to have a non-standard genetic code, and is one of only a few known plastid DNAs (ptDNAs), out of thousands of available sequences, not biased in adenine and thymine. Here, I take a closer look at the H. lacustris plastome, comparing its size, content and architecture to other large organelle DNAs, including those from close relatives in the Chlamydomonadales. I show that the H. lacustris plastid coding repertoire is not as unusual as initially thought, representing a standard set of rRNAs, tRNAs and protein-coding genes, where the canonical stop codon UGA appears to sometimes signify tryptophan. The intergenic spacers are dense with repeats, and it is within these regions where potential answers to the source of such extreme genomic expansion lie. By comparing ptDNA sequences of two closely related strains of H. lacustris, I argue that the mutation rate of the non-coding DNA is high and contributing to plastome inflation. Finally, by exploring publicly available RNA-sequencing data, I find that most of the intergenic ptDNA is transcriptionally active.


September 22, 2019  |  

Genome analysis of the yeast M14, an industrial brewing yeast strain widely used in China

The lager brewing yeast M14 is the most widely used yeast strain in the high gravity brewing process in China. To investigate the characteristics of this strain, the genome of the yeast M14 was sequenced and the genome annotation information is presented in this study. The current assembly contained 133 scaffolds and its total size was around 23?Mb with a GC content of 38.98%. The brewing yeast M14 is a hybrid Saccharomyces cerevisiae?×?Saccharomyces uvarum at the genomic level and its genome is comprised of one circular mitochondrial genome originating from S. uvarum. Furthermore, the functions of the 9,796 protein coding genes were annotated and their functions were analyzed using the Swiss-Prot database. Among them, the key genes responsible for typical lager brewing yeast characteristics, such as maltotriose uptake and sulfite production, were annotated and analyzed. Interestingly, nine specific genes present in the brewing yeast M14 were not found in the genome of either S. uvarum CBS 7001 or S. cerevisiae S288C, which are very close to strain M14 in the phylogenetic relationship. These nine genes encoding proteins were melibiase, DNA replication protein, fructose symporter, hypothetical protein, hypothetical protein M773_09155, LIF1, minor spike protein H, ribosomal protein S27, and mitochondrial chaperones, respectively. The genome sequence of the yeast strain M14 provides a new tool to better understand brewing yeast behavior in industrial beer production.


September 22, 2019  |  

Repeat elements organise 3D genome structure and mediate transcription in the filamentous fungus Epichloë festucae.

Structural features of genomes, including the three-dimensional arrangement of DNA in the nucleus, are increasingly seen as key contributors to the regulation of gene expression. However, studies on how genome structure and nuclear organisation influence transcription have so far been limited to a handful of model species. This narrow focus limits our ability to draw general conclusions about the ways in which three-dimensional structures are encoded, and to integrate information from three-dimensional data to address a broader gamut of biological questions. Here, we generate a complete and gapless genome sequence for the filamentous fungus, Epichloë festucae. We use Hi-C data to examine the three-dimensional organisation of the genome, and RNA-seq data to investigate how Epichloë genome structure contributes to the suite of transcriptional changes needed to maintain symbiotic relationships with the grass host. Our results reveal a genome in which very repeat-rich blocks of DNA with discrete boundaries are interspersed by gene-rich sequences that are almost repeat-free. In contrast to other species reported to date, the three-dimensional structure of the genome is anchored by these repeat blocks, which act to isolate transcription in neighbouring gene-rich regions. Genes that are differentially expressed in planta are enriched near the boundaries of these repeat-rich blocks, suggesting that their three-dimensional orientation partly encodes and regulates the symbiotic relationship formed by this organism.


September 22, 2019  |  

Genomic analysis of Picochlorum species reveals how microalgae may adapt to variable environments.

Understanding how microalgae adapt to rapidly changing environments is not only important to science but can help clarify the potential impact of climate change on the biology of primary producers. We sequenced and analyzed the nuclear genome of multiple Picochlorum isolates (Chlorophyta) to elucidate strategies of environmental adaptation. It was previously found that coordinated gene regulation is involved in adaptation to salinity stress, and here we show that gene gain and loss also play key roles in adaptation. We determined the extent of horizontal gene transfer (HGT) from prokaryotes and their role in the origin of novel functions in the Picochlorum clade. HGT is an ongoing and dynamic process in this algal clade with adaptation being driven by transfer, divergence, and loss. One HGT candidate that is differentially expressed under salinity stress is indolepyruvate decarboxylase that is involved in the production of a plant auxin that mediates bacteria-diatom symbiotic interactions. Large differences in levels of heterozygosity were found in diploid haplotypes among Picochlorum isolates. Biallelic divergence was pronounced in P. oklahomensis (salt plains environment) when compared with its closely related sister taxon Picochlorum SENEW3 (brackish water environment), suggesting a role of diverged alleles in response to environmental stress. Our results elucidate how microbial eukaryotes with limited gene inventories expand habitat range from mesophilic to halophilic through allelic diversity, and with minor but important contributions made by HGT. We also explore how the nature and quality of genome data may impact inference of nuclear ploidy.


September 22, 2019  |  

Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus.

Hypsizygus marmoreus (Beech mushroom) is a popular ingredient in Asian cuisine. The medicinal effects of its bioactive compounds such as hypsin and hypsiziprenol have been reported, but the genetic basis or biosynthesis of these components is unknown.In this study, we sequenced a reference strain of H. marmoreus (Haemi 51,987-8). We evaluated various assembly strategies, and as a result the Allpaths and PBJelly produced the best assembly. The resulting genome was 42.7 Mbp in length and annotated with 16,627 gene models. A putative gene (Hypma_04324) encoding the antifungal and antiproliferative hypsin protein with 75% sequence identity with the previously known N-terminal sequence was identified. Carbohydrate active enzyme analysis displayed the typical feature of white-rot fungi where auxiliary activity and carbohydrate-binding modules were enriched. The genome annotation revealed four terpene synthase genes responsible for terpenoid biosynthesis. From the gene tree analysis, we identified that terpene synthase genes can be classified into six clades. Four terpene synthase genes of H. marmoreus belonged to four different groups that implies they may be involved in the synthesis of different structures of terpenes. A terpene synthase gene cluster was well-conserved in Agaricomycetes genomes, which contained known biosynthesis and regulatory genes.Genome sequence analysis of this mushroom led to the discovery of the hypsin gene. Comparative genome analysis revealed the conserved gene cluster for terpenoid biosynthesis in the genome. These discoveries will further our understanding of the biosynthesis of medicinal bioactive molecules in this edible mushroom.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.