The lager brewing yeast M14 is the most widely used yeast strain in the high gravity brewing process in China. To investigate the characteristics of this strain, the genome of the yeast M14 was sequenced and the genome annotation information is presented in this study. The current assembly contained 133 scaffolds and its total size was around 23?Mb with a GC content of 38.98%. The brewing yeast M14 is a hybrid Saccharomyces cerevisiae?×?Saccharomyces uvarum at the genomic level and its genome is comprised of one circular mitochondrial genome originating from S. uvarum. Furthermore, the functions of the 9,796 protein coding genes were annotated and their functions were analyzed using the Swiss-Prot database. Among them, the key genes responsible for typical lager brewing yeast characteristics, such as maltotriose uptake and sulfite production, were annotated and analyzed. Interestingly, nine specific genes present in the brewing yeast M14 were not found in the genome of either S. uvarum CBS 7001 or S. cerevisiae S288C, which are very close to strain M14 in the phylogenetic relationship. These nine genes encoding proteins were melibiase, DNA replication protein, fructose symporter, hypothetical protein, hypothetical protein M773_09155, LIF1, minor spike protein H, ribosomal protein S27, and mitochondrial chaperones, respectively. The genome sequence of the yeast strain M14 provides a new tool to better understand brewing yeast behavior in industrial beer production.
Journal: Journal of the American Society of Brewing Chemists
DOI: 10.1080/03610470.2018.1496633
Year: 2018