fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

A mcr-1-carrying conjugative IncX4 plasmid in colistin-resistant Escherichia coli ST278 strain isolated from dairy cow feces in Shanghai, China.

Enterobacteriaceae, including Escherichia coli, has been shown to acquire the colistin resistance gene mcr-1. A strain of E. coli, EC11, which is resistant to colistin, polymyxin B and trimethoprim-sulfamethoxazole, was isolated in 2016 from the feces of a dairy cow in Shanghai, China. Strain EC11 identifies with sequence type ST278 and is susceptible to 19 frequently used antibiotics. Whole genome sequencing of strain EC11 showed that this strain contains a 31-kb resistance plasmid, pEC11b, which belongs to the IncX4 group. The mcr-1 gene was shown to be inserted into a 2.6-kb mcr-1-pap2 cassette of pEC11b. Plasmid pEC11b also contained putative…

Read More »

Sunday, September 22, 2019

Insights into the microbiota of Asian seabass (Lates calcarifer) with tenacibaculosis symptoms and description of sp. nov. Tenacibaculum singaporense

Outbreaks of diseases in farmed fish remain a recurring problem despite the development of vaccines and improved hygiene standards on aquaculture farms. One commonly observed bacterial disease in tropical aquaculture of the South-East Asian region is tenacibaculosis, which is attributed to members of the Bacteroidetes genus Tenacibaculum, most notably T. maritimum. The impact of tenacibaculosis on fish microbiota remains poorly understood. In this study, we analysed the microbiota of different tissue types of commercially reared Asian seabass (Lates calcarifer) that showed symptoms of tenacibaculosis and compared the microbial communities to those of healthy and experimentally infected fish that were exposed…

Read More »

Sunday, September 22, 2019

Acquired interbacterial defense systems protect against interspecies antagonism in the human gut microbiome

The genomes of bacteria derived from the gut microbiota are replete with pathways that mediate contact-dependent interbacterial antagonism. However, the role of direct interactions between co-resident microbes in driving microbiome composition is not well understood. Here we report the widespread occurrence of acquired interbacterial defense (AID) gene clusters in the human gut microbiome. These clusters are found on predicted mobile elements and encode arrays of immunity genes that confer protection against interbacterial toxin-mediated antagonism in vitro and in gnotobiotic mice. We find that Bacteroides ovatus strains containing AID systems that inactivate B. fragilis toxins delivered between cells by the type…

Read More »

Sunday, September 22, 2019

Complete Genome Sequence of Massilia oculi sp. nov. CCUG 43427T (=DSM 26321T), the Type Strain of M. oculi, and Comparison with Genome Sequences of Other Massilia Strains.

Massilia oculi sp. nov. of type strain CCUG 43427T is a Gram-negative, rod-shaped, nonspore-forming bacterium, which was recently isolated from the eye of a patient suffering from endophthalmitis and was described as novel species in Massilia genus. In this study, we present the complete genome sequence of this strain by using Pacbio SMRT cell platform and compare this sequence with the genomes of 30 Massilia representative strains. Also, a comprehensive search was conducted for genes and proteins involved in antibiotic resistance and pathogenicity. The genome of CCUG 43427T is 5,844,653 bp with 65.55% GC content. This genome contains four prophages and…

Read More »

Sunday, September 22, 2019

Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism.

Under methanogenic conditions, short-chain fatty acids are common byproducts from degradation of organic compounds and conversion of these acids is an important component of the global carbon cycle. Due to the thermodynamic difficulty of propionate degradation, this process requires syntrophic interaction between a bacterium and partner methanogen; however, the metabolic strategies and behaviour involved are not fully understood. In this study, the first genome analysis of obligately syntrophic propionate degraders (Pelotomaculum schinkii HH and P. propionicicum MGP) and comparison with other syntrophic propionate degrader genomes elucidated novel components of energy metabolism behind Pelotomaculum propionate oxidation. Combined with transcriptomic examination of…

Read More »

Sunday, September 22, 2019

Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions.

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain…

Read More »

Sunday, September 22, 2019

Genomic characterization of ß-glucuronidase-positive Escherichia coli O157:H7 producing Stx2a.

Among Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a ß-glucuronidase-positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (ß-glucuronidase-negative)…

Read More »

Sunday, September 22, 2019

Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa.

Faecalibacterium prausnitzii is a ubiquitous member of the human gut microbiome, constituting up to 15% of the total bacteria in the human gut. Substantial evidence connects decreased levels of F. prausnitzii with the onset and progression of certain forms of inflammatory bowel disease, which has been attributed to its anti-inflammatory potential. Two phylogroups of F. prausnitzii have been identified, with a decrease in phylogroup I being a more sensitive marker of intestinal inflammation. Much of the genomic and physiological data available to date was collected using phylogroup II strains. Little analysis of F. prausnitzii genomes has been performed so far…

Read More »

Sunday, September 22, 2019

The phylogenomic diversity of herbivore- associated Fibrobacter spp. is correlated to lignocellulose-degrading potential.

Members of the genus Fibrobacter are cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novel Fibrobacter strains against the type strains for the two formally described Fibrobacter species F. succinogenes strain S85 and F. intestinalis strain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed…

Read More »

Sunday, September 22, 2019

Genotypes and phenotypes of Enterococci isolated from broiler chickens

The objective of this study was to compare the resistance phenotypes to genotypes of enterococci from broiler and to evaluate the persistence and distribution of resistant genotypes in broiler fed bambermycin (BAM), penicillin (PEN), salinomycin (SAL), bacitracin (BAC) or a salinomycin/bacitracin combination (SALBAC) for 35 days. A total of 95 enterococci from cloacal (n=40), cecal (n=38) and litter collected on day 36 (n=17) samples were isolated weekly from day 7 to 36. All isolates were identified by API-20 Strep and their antimicrobial susceptibilities were evaluated using the Sensititre system with the commercially available NARMS’s plates of Gram positive bacteria. Whole…

Read More »

Sunday, September 22, 2019

A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period.

Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456…

Read More »

Sunday, September 22, 2019

Description of Schaedlerella arabinophila gen. nov., sp. nov., a D-arabinose utilizing bacterium isolated from feces of C57BL/6J mice and a close relative of Clostridium sp. ASF 502

The use of gnotobiotics has gained large interest in recent years due to technological advances that have revealed the importance of host-associated microbiomes for host physiology and health. One of the oldest and most important gnotobiotics mouse model, the Altered Schaedler Flora (ASF) has been used for several decades. ASF comprises eight different bacterial species, which have been characterized to different extent, but only few are available through public strain collections. Here, the isolation of a close relative to one of the less studied ASF strains, Clostridium sp. ASF 502, is reported. Isolate TLL-A1, which shares 99.6% 16S rRNA gene…

Read More »

Saturday, September 21, 2019

Functional analysis of the first complete genome sequence of a multidrug resistant sequence type 2 Staphylococcus epidermidis.

Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug resistant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2 genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of BPH0662, a multidrug resistant, hospital adapted, ST2 S. epidermidis, and describe the correlation between resistome and phenotype, as well as demonstrate its relationship to publically available, international ST2 isolates. Furthermore, we delineate the methylome determined by the two type I restriction modification systems present in BPH0662 through heterologous expression…

Read More »

1 16 17 18

Subscribe for blog updates:

Archives