Menu
September 22, 2019  |  

Acquired interbacterial defense systems protect against interspecies antagonism in the human gut microbiome

The genomes of bacteria derived from the gut microbiota are replete with pathways that mediate contact-dependent interbacterial antagonism. However, the role of direct interactions between co-resident microbes in driving microbiome composition is not well understood. Here we report the widespread occurrence of acquired interbacterial defense (AID) gene clusters in the human gut microbiome. These clusters are found on predicted mobile elements and encode arrays of immunity genes that confer protection against interbacterial toxin-mediated antagonism in vitro and in gnotobiotic mice. We find that Bacteroides ovatus strains containing AID systems that inactivate B. fragilis toxins delivered between cells by the type VI secretion system are enriched in samples lacking detectable B. fragilis. Moreover, these strains display significantly higher abundance in gut metagenomes than strains without AID systems. Finally, we identify a recombinase-associated AID subtype present broadly in Bacteroidales genomes with features suggestive of active gene acquisition. Our data suggest that neutralization of contact-dependent interbacterial antagonism via AID systems plays an important role in shaping human gut microbiome ecology.


September 22, 2019  |  

Complete Genome Sequence of Massilia oculi sp. nov. CCUG 43427T (=DSM 26321T), the Type Strain of M. oculi, and Comparison with Genome Sequences of Other Massilia Strains.

Massilia oculi sp. nov. of type strain CCUG 43427T is a Gram-negative, rod-shaped, nonspore-forming bacterium, which was recently isolated from the eye of a patient suffering from endophthalmitis and was described as novel species in Massilia genus. In this study, we present the complete genome sequence of this strain by using Pacbio SMRT cell platform and compare this sequence with the genomes of 30 Massilia representative strains. Also, a comprehensive search was conducted for genes and proteins involved in antibiotic resistance and pathogenicity. The genome of CCUG 43427T is 5,844,653 bp with 65.55% GC content. This genome contains four prophages and four genomic islands (GIs). The cobalt/zinc/cadmium transporter locus CzcABCD is included in these GIs. This GI was predicted to play important role in bacterial heavy-metal tolerance. The in silico genome analysis also revealed that this strain contains a lot of antibiotic resistance and pathogenicity related genes. This result suggested that this strain may has evolved a wide arsenal of weapons for pathogenicity and survival. Genome comparison among CCUG 43427T and other 30 Massilia strains revealed that more than 400 genes are unique in CCUG 43427T. Among these, one gene cluster, which was annotated to be important for LOS biosynthesis, catalytic mechanism and the substrate specificity of the enzyme, was predicted to be horizontally transferred by using phylogenies and biased GC content.


September 22, 2019  |  

Novel energy conservation strategies and behaviour of Pelotomaculum schinkii driving syntrophic propionate catabolism.

Under methanogenic conditions, short-chain fatty acids are common byproducts from degradation of organic compounds and conversion of these acids is an important component of the global carbon cycle. Due to the thermodynamic difficulty of propionate degradation, this process requires syntrophic interaction between a bacterium and partner methanogen; however, the metabolic strategies and behaviour involved are not fully understood. In this study, the first genome analysis of obligately syntrophic propionate degraders (Pelotomaculum schinkii HH and P. propionicicum MGP) and comparison with other syntrophic propionate degrader genomes elucidated novel components of energy metabolism behind Pelotomaculum propionate oxidation. Combined with transcriptomic examination of P. schinkii behaviour in co-culture with Methanospirillum hungatei, we found that formate may be the preferred electron carrier for P. schinkii syntrophy. Propionate-derived menaquinol may be primarily re-oxidized to formate, and energy was conserved during formate generation through newly proposed proton-pumping formate extrusion. P. schinkii did not overexpress conventional energy metabolism associated with a model syntrophic propionate degrader Syntrophobacter fumaroxidans MPOB (i.e., CoA transferase, Fix and Rnf). We also found that P. schinkii and the partner methanogen may also interact through flagellar contact and amino acid and fructose exchange. These findings provide new understanding of syntrophic energy acquisition and interactions.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.


September 22, 2019  |  

Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions.

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain’s inability to utilize lactose, unlike the type strain of this subspecies, B. animalis subsp. animalis ATCC25527 and the B. animalis subsp. lactis subspecies. In addition, the ability of B. animalis subsp. animalis CNCM I-4602 to colonize a murine model was investigated, which showed that this strain persists in the murine gut for a period of at least 4 weeks. Associated in vivo transcriptome analysis revealed that, among other genes, a gene cluster encoding a predicted type IVb tight adherence (Tad) pilus was upregulated, indicating that this extracellular structure plays a role in the colonization/adaptation of the murine gastrointestinal tract by this strain.


September 22, 2019  |  

Genomic characterization of ß-glucuronidase-positive Escherichia coli O157:H7 producing Stx2a.

Among Shiga toxin (Stx)-producing Escherichia coli (STEC) O157:H7 strains, those producing Stx2a cause more severe diseases. Atypical STEC O157:H7 strains showing a ß-glucuronidase-positive phenotype (GP STEC O157:H7) have rarely been isolated from humans, mostly from persons with asymptomatic or mild infections; Stx2a-producing strains have not been reported. We isolated, from a patient with bloody diarrhea, a GP STEC O157:H7 strain (PV15-279) that produces Stx2a in addition to Stx1a and Stx2c. Genomic comparison with other STEC O157 strains revealed that PV15-279 recently emerged from the stx1a/stx2c-positive GP STEC O157:H7 clone circulating in Japan. Major virulence genes are shared between typical (ß-glucuronidase-negative) and GP STEC O157:H7 strains, and the Stx2-producing ability of PV15-279 is comparable to that of typical STEC O157:H7 strains; therefore, PV15-279 presents a virulence potential similar to that of typical STEC O157:H7. This study reveals the importance of GP O157:H7 as a source of highly pathogenic STEC clones.


September 22, 2019  |  

Comparative analysis of Faecalibacterium prausnitzii genomes shows a high level of genome plasticity and warrants separation into new species-level taxa.

Faecalibacterium prausnitzii is a ubiquitous member of the human gut microbiome, constituting up to 15% of the total bacteria in the human gut. Substantial evidence connects decreased levels of F. prausnitzii with the onset and progression of certain forms of inflammatory bowel disease, which has been attributed to its anti-inflammatory potential. Two phylogroups of F. prausnitzii have been identified, with a decrease in phylogroup I being a more sensitive marker of intestinal inflammation. Much of the genomic and physiological data available to date was collected using phylogroup II strains. Little analysis of F. prausnitzii genomes has been performed so far and genetic differences between phylogroups I and II are poorly understood.In this study we sequenced 11 additional F. prausnitzii genomes and performed comparative genomics to investigate intraspecies diversity, functional gene complement and the mobilome of 31 high-quality draft and complete genomes. We reveal a very low level of average nucleotide identity among F. prausnitzii genomes and a high level of genome plasticity. Two genomogroups can be separated based on differences in functional gene complement, albeit that this division does not fully agree with separation based on conserved gene phylogeny, highlighting the importance of horizontal gene transfer in shaping F. prausnitzii genomes. The difference between the two genomogroups is mainly in the complement of genes associated with catabolism of carbohydrates (such as a predicted sialidase gene in genomogroup I) and amino acids, as well as defense mechanisms.Based on the combination of ANI of genomic sequences, phylogenetic analysis of core proteomes and functional differences we propose to separate the species F. prausnitzii into two new species level taxa: F. prausnitzii sensu stricto (neotype strain A2-165T?=?DSM 17677T?=?JCM 31915T) and F. moorei sp. nov. (type strain ATCC 27768T?=?NCIMB 13872T).


September 22, 2019  |  

The phylogenomic diversity of herbivore- associated Fibrobacter spp. is correlated to lignocellulose-degrading potential.

Members of the genus Fibrobacter are cellulose-degrading bacteria and common constituents of the gastrointestinal microbiota of herbivores. Although considerable phylogenetic diversity is observed among members of this group, few functional differences explaining the distinct ecological distributions of specific phylotypes have been described. In this study, we sequenced and performed a comparative analysis of whole genomes from 38 novel Fibrobacter strains against the type strains for the two formally described Fibrobacter species F. succinogenes strain S85 and F. intestinalis strain NR9. Significant differences in the number of genes encoding carbohydrate-active enzyme families involved in plant cell wall polysaccharide degradation were observed among Fibrobacter phylotypes. F. succinogenes genomes were consistently enriched in genes encoding carbohydrate-active enzymes compared to those of F. intestinalis strains. Moreover, genomes of F. succinogenes phylotypes that are dominant in the rumen had significantly more genes annotated to major families involved in hemicellulose degradation (e.g., CE6, GH10, and GH43) than did the genomes of F. succinogenes phylotypes typically observed in the lower gut of large hindgut-fermenting herbivores such as horses. Genes encoding a putative urease were also identified in 12 of the Fibrobacter genomes, which were primarily isolated from hindgut-fermenting hosts. Screening for growth on urea as the sole source of nitrogen provided strong evidence that the urease was active in these strains. These results represent the strongest evidence reported to date for specific functional differences contributing to the ecology of Fibrobacter spp. in the herbivore gut.IMPORTANCE The herbivore gut microbiome is incredibly diverse, and a functional understanding of this diversity is needed to more reliably manipulate this community for specific gain, such as increased production in ruminant livestock. Microbial degraders of plant cell wall polysaccharides in the herbivore gut, particularly Fibrobacter spp., are of fundamental importance to their hosts for digestion of a diet consisting primarily of recalcitrant plant fibers. Considerable phylogenetic diversity exists among members of the genus Fibrobacter, but much of this diversity remains cryptic. Here, we used comparative genomics, applied to a diverse collection of recently isolated Fibrobacter strains, to identify a robust association between carbohydrate-active enzyme gene content and the Fibrobacter phylogeny. Our results provide the strongest evidence reported to date for functional differences among Fibrobacter phylotypes associated with either the rumen or the hindgut and emphasize the general significance of carbohydrate-active enzymes in the evolution of fiber-degrading bacteria. Copyright © 2018 Neumann and Suen.


September 22, 2019  |  

Genotypes and phenotypes of Enterococci isolated from broiler chickens

The objective of this study was to compare the resistance phenotypes to genotypes of enterococci from broiler and to evaluate the persistence and distribution of resistant genotypes in broiler fed bambermycin (BAM), penicillin (PEN), salinomycin (SAL), bacitracin (BAC) or a salinomycin/bacitracin combination (SALBAC) for 35 days. A total of 95 enterococci from cloacal (n=40), cecal (n=38) and litter collected on day 36 (n=17) samples were isolated weekly from day 7 to 36. All isolates were identified by API-20 Strep and their antimicrobial susceptibilities were evaluated using the Sensititre system with the commercially available NARMS’s plates of Gram positive bacteria. Whole genome sequencing (WGS) was used to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. All isolates were further characterized for hemolysin production (HEM), bile salt hydrolysis (BSH) and gelatinase (GEL) activities. Of the 95 isolates, E. faecium (n = 58) and E. faecalis (n = 24) were the most common Enterococcus species identified. Significant differences in the level of resistance for the E. faecium isolates to ciprofloxacin, macrolide, penicillin and tetracycline were observed among treatments. The bcrR, mefA and aac(6) genes were higher in BAM treatment than the other groups whereas bcrR, ermA, ermB, aphA(3) and tetL were more prevalent in PEN and BAC treatments. Overall, E. faecium isolates showed higher prevalence of antimicrobial resistance, but E. faecalis from litter also exhibited a significant level of resistance. A range of 4 to 15 different virulence genes was detected in E. faecalis. All isolates from litter but one (94.1%) showed BSH activities while 52.9% of them produced GEL. HEM activity was observed only in isolates collected on Day 7 (n= 9) and Day 14 (n= 1). This study confirmed that genetically diverse antimicrobial resistant enterococci harboring virulence factors can be promoted by the use of certain antimicrobials in feed and such enterococci could persist in broiler chickens and their litter, potentially contaminating the soil upon land application. This study underscores the need for ongoing monitoring the AMR enterococci.


September 22, 2019  |  

A novel probiotic, Lactobacillus johnsonii 456, resists acid and can persist in the human gut beyond the initial ingestion period.

Probiotics are considered to have multiple beneficial effects on the human gastrointestinal tract, including immunomodulation, pathogen inhibition, and improved host nutrient metabolism. However, extensive characterization of these properties is needed to define suitable clinical applications for probiotic candidates. Lactobacillus johnsonii 456 (LBJ 456) was previously demonstrated to have anti-inflammatory and anti-genotoxic effects in a mouse model. Here, we characterize its resistance to gastric and bile acids as well as its ability to inhibit gut pathogens and adhere to host mucosa. While bile resistance and in vitro host attachment properties of LBJ 456 were comparable to other tested probiotics, LBJ 456 maintained higher viability at lower pH conditions compared to other tested strains. LBJ 456 also altered pathogen adhesion to LS 174T monolayers and demonstrated contact-dependent and independent inhibition of pathogen growth. Genome analyses further revealed possible genetic elements involved in host attachment and pathogen inhibition. Importantly, we show that ingestion of Lactobacillus johnsonii 456 over a one week yogurt course leads to persistent viable bacteria detectable even beyond the period of initial ingestion, unlike many other previously described probiotic species of lactic acid bacteria.


September 22, 2019  |  

Description of Schaedlerella arabinophila gen. nov., sp. nov., a D-arabinose utilizing bacterium isolated from feces of C57BL/6J mice and a close relative of Clostridium sp. ASF 502

The use of gnotobiotics has gained large interest in recent years due to technological advances that have revealed the importance of host-associated microbiomes for host physiology and health. One of the oldest and most important gnotobiotics mouse model, the Altered Schaedler Flora (ASF) has been used for several decades. ASF comprises eight different bacterial species, which have been characterized to different extent, but only few are available through public strain collections. Here, the isolation of a close relative to one of the less studied ASF strains, Clostridium sp. ASF 502, is reported. Isolate TLL-A1, which shares 99.6% 16S rRNA gene sequence identity with Clostridium sp. ASF 502, was obtained from feces of C57BL/6J mice where is was detectable at a relative abundance of less than one percent. D-arabinose was used as sole carbon source in the anaerobic cultivation medium. Growth experiments with TLL-A1 on different carbon sources and analysis of its ~6.5 gigabase genome indicate that TLL-A1 harbors a large gene repertoire to utilize different carbohydrates for growth. Comparative genome analyses of TLL-A1 and Clostridium sp. ASF 502 reveal differences in genome content between the two strains, in particular with regards to carbohydrate activating enzymes. Based on physiology and genomic analysis it is proposed to name TLL-A1 to gen. nov. sp. nov Schaedlerella arabinophila TLL-A1 (DSMZ 106076T; KCTC 15657T). The closely related Clostridium sp. ASF 502 is proposed to be renamed to Schaedlerella arabinophila to reflect its taxonomic standing and to keep textquoterightASF 502textquoteright as strain designation.


September 21, 2019  |  

Functional analysis of the first complete genome sequence of a multidrug resistant sequence type 2 Staphylococcus epidermidis.

Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug resistant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2 genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of BPH0662, a multidrug resistant, hospital adapted, ST2 S. epidermidis, and describe the correlation between resistome and phenotype, as well as demonstrate its relationship to publically available, international ST2 isolates. Furthermore, we delineate the methylome determined by the two type I restriction modification systems present in BPH0662 through heterologous expression in Escherichia coli, allowing the assignment of each system to its corresponding target recognition motif. As the first complete ST2 S. epidermidis genome, BPH0662 provides a valuable reference for future genomic studies of this clinically relevant lineage. Defining the methylome and the construction of these E. coli hosts provides the foundation for the development of molecular tools to bypass restriction modification systems in this lineage that has hitherto proven intractable.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.