Menu
September 22, 2019  |  

Eco-friendly Management of Karnal Bunt (Neovossia indica) of Wheat

Karnal bunt incited by Neovossia indica is one of the most important disease of wheat crop. To develop an eco-friendly management practice against Karnal bunt of wheat, integration of fungicidal seed treatment with foliar sprays of phytoextracts, bio-control agent and fungicide revealed. Uses of Thiram 75DS or Kavach 75WP @2g/Kg, Dithane M-45 or Captan [email protected]/Kg, Vitavax [email protected]/Kg, Tilt 25EC or Raxil 2DS@1mL/Kg or Pseudomonas fluorescens@5 mL/Kg or Trichoderma viride (Ecoderma) or T. harzianum@5 mL/Kg seed treatment for eliminating primary inoculum (teliospores). Seed soaking in Lantana (L. camara) or Eucalyptus (E. globulus) or Akh (Calotropis procera) or Kali basuti (Eupatorium adenophorum) @ 250 mL/L for 60 min and dry in shad are effective in eradicating the seed infection also. Application foliar spray of Baycor 25WP or Bavistin 50WP or F-100 or Moximate [email protected]/Kg, Tilt 25EC or Folicur 25EC or Contaf 25EC@1mL/Kg at boot leaf stage and 50% emergence flowering heads against the secondary air-borne inoculum (Allantoides sporidia). This is concerning integration of fungicide seed treatment with foliar spray of bio- control agent and phyto-extract. It is cheaper and eco-friendly practice for the control of Karnal bunt of wheat.


September 22, 2019  |  

Understanding explosive diversification through cichlid fish genomics.

Owing to their taxonomic, phenotypic, ecological and behavioural diversity and propensity for explosive diversification, the assemblages of cichlid fish in the East African Great Lakes Victoria, Malawi and Tanganyika are important role models in evolutionary biology. With the release of five reference genomes and many additional genomic resources, as well as the establishment of functional genomic tools, the cichlid system has fully entered the genomic era. The in-depth genomic exploration of the East African cichlid fauna – in combination with the examination of their ecology, morphology and behaviour – permits novel insights into the way organisms diversify.


September 22, 2019  |  

Genomic analysis of consecutive Acinetobacter baumannii strains from a single patient.

Acinetobacter baumannii is one of the most important nosocomial pathogens, and thus it is required to investigate how it disseminate in hospitals and infect patients. We performed whole genome sequencing for 24 A. baumannii strains isolated successively from the blood of a single patient to evaluate whether repeated infections were due to re-infection or relapse infection and to investigate within-host evolution. The whole genome of the first strain, BL1, was sequenced de novo using the PacBio RSII system. BL2-BL24, were sequenced with an Illumina Hiseq4000 and mapped to the genome sequences of BL1. We identified 42 single-nucleotide variations among the strains. The SNVs differentiated the strains into three groups, BL1, BL2-BL16, and BL17-BL24, indicating that the patient suffered from re-infections or co-infections by similar, but different strains. The results also showed that A. baumannii strains in each group were rather stable at the genomic level. Our study emphasizes the importance of intensive infection control.


September 22, 2019  |  

Conjugative transfer of a novel Staphylococcal plasmid encoding the biocide resistance gene, qacA.

Staphylococcus aureus is the leading cause of skin and soft tissue infections (SSTI). Some S. aureus strains harbor plasmids that carry genes that affect resistance to biocides. Among these genes, qacA encodes the QacA Multidrug Efflux Pump that imparts decreased susceptibility to chlorhexidine, a biocide used ubiquitously in healthcare facilities. Furthermore, chlorhexidine has been considered as a S. aureus decolonization strategy in community settings. We previously conducted a chlorhexidine-based SSTI prevention trial among Ft. Benning Army trainees. Analysis of a clinical isolate (C02) from that trial identified a novel qacA-positive plasmid, pC02. Prior characterization of qacA-containing plasmids is limited and conjugative transfer of those plasmids has not been demonstrated. Given the implications of increased biocide resistance, herein we characterized pC02. In silico analysis identified genes typically associated with conjugative plasmids. Moreover, pC02 was efficiently transferred to numerous S. aureus strains and to Staphylococcus epidermidis. We screened additional qacA-positive S. aureus clinical isolates and pC02 was present in 27% of those strains; other unique qacA-harboring plasmids were also identified. Ten strains were subjected to whole genome sequencing. Sequence analysis combined with plasmid screening studies suggest that qacA-containing strains are transmitted among military personnel at Ft. Benning and that strains carrying qacA are associated with SSTIs within this population. The identification of a novel mechanism of qacA conjugative transfer among Staphylococcal strains suggests a possible future increase in the prevalence of antiseptic tolerant bacterial strains, and an increase in the rate of infections in settings where these agents are commonly used.


September 22, 2019  |  

Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


September 22, 2019  |  

Report from the Killer-cell Immunoglobulin-like Receptors (KIR) component of the 17th International HLA and Immunogenetics Workshop.

The goals of the KIR component of the 17th International HLA and Immunogenetics Workshop (IHIW) were to encourage and educate researchers to begin analyzing KIR at allelic resolution, and to survey the nature and extent of KIR allelic diversity across human populations. To represent worldwide diversity, we analyzed 1269 individuals from ten populations, focusing on the most polymorphic KIR genes, which express receptors having three immunoglobulin (Ig)-like domains (KIR3DL1/S1, KIR3DL2 and KIR3DL3). We identified 13 novel alleles of KIR3DL1/S1, 13 of KIR3DL2 and 18 of KIR3DL3. Previously identified alleles, corresponding to 33 alleles of KIR3DL1/S1, 38 of KIR3DL2, and 43 of KIR3DL3, represented over 90% of the observed allele frequencies for these genes. In total we observed 37 KIR3DL1/S1 allotypes, 40 for KIR3DL2 and 44 for KIR3DL3. As KIR allotype diversity can affect NK cell function, this demonstrates potential for high functional diversity worldwide. Allelic variation further diversifies KIR haplotypes. We determined KIR3DL3?~?KIR3DL1/S1?~?KIR3DL2 haplotypes from five of the studied populations, and observed multiple population-specific haplotypes in each. This included 234 distinct haplotypes in European Americans, 191 in Ugandans, 35 in Papuans, 95 in Egyptians and 86 in Spanish populations. For another 35 populations, encompassing 642,105 individuals we focused on KIR3DL2 and identified another 375 novel alleles, with approximately half of them observed in more than one individual. The KIR allelic level data gathered from this project represents the most comprehensive summary of global KIR allelic diversity to date, and continued analysis will improve understanding of KIR allelic polymorphism in global populations. Further, the wealth of new data gathered in the course of this workshop component highlights the value of collaborative, community-based efforts in immunogenetics research, exemplified by the IHIW.Copyright © 2018. Published by Elsevier Inc.


September 22, 2019  |  

Glyphosate resistance and EPSPS gene duplication: Convergent evolution in multiple plant species.

One of the increasingly widespread mechanisms of resistance to the herbicide glyphosate is copy number variation (CNV) of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. EPSPS gene duplication has been reported in eight weed species, ranging from 3-5 extra copies to more than 150 extra copies. In the case of Palmer amaranth (Amaranthus palmeri), a section of >300 kb containing EPSPS and many other genes has been replicated and inserted at new loci throughout the genome, resulting in significant increase in total genome size. The replicated sequence contains several classes of mobile genetic elements including helitrons, raising the intriguing possibility of extra-chromosomal replication of the EPSPS-containing sequence. In kochia (Kochia scoparia), from three to more than 10 extra EPSPS copies are arranged as a tandem gene duplication at one locus. In the remaining six weed species that exhibit EPSPS gene duplication, little is known about the underlying mechanisms of gene duplication or their entire sequence. There is mounting evidence that adaptive gene amplification is an important mode of evolution in the face of intense human-mediated selection pressure. The convergent evolution of CNVs for glyphosate resistance in weeds, through at least two different mechanisms, may be indicative of a more general importance for this mechanism of adaptation in plants. CNVs warrant further investigation across plant functional genomics for adaptation to biotic and abiotic stresses, particularly for adaptive evolution on rapid time scales.© The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 21, 2019  |  

The axolotl genome and the evolution of key tissue formation regulators.

Salamanders serve as important tetrapod models for developmental, regeneration and evolutionary studies. An extensive molecular toolkit makes the Mexican axolotl (Ambystoma mexicanum) a key representative salamander for molecular investigations. Here we report the sequencing and assembly of the 32-gigabase-pair axolotl genome using an approach that combined long-read sequencing, optical mapping and development of a new genome assembler (MARVEL). We observed a size expansion of introns and intergenic regions, largely attributable to multiplication of long terminal repeat retroelements. We provide evidence that intron size in developmental genes is under constraint and that species-restricted genes may contribute to limb regeneration. The axolotl genome assembly does not contain the essential developmental gene Pax3. However, mutation of the axolotl Pax3 paralogue Pax7 resulted in an axolotl phenotype that was similar to those seen in Pax3-/- and Pax7-/- mutant mice. The axolotl genome provides a rich biological resource for developmental and evolutionary studies.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.