Menu
July 7, 2019  |  

Activation of the mismatch-specific endonuclease EndoMS/NucS by the replication clamp is required for high fidelity DNA replication.

The mismatch repair (MMR) system, exemplified by the MutS/MutL proteins, is widespread in Bacteria and Eukarya. However, molecular mechanisms how numerous archaea and bacteria lacking the mutS/mutL genes maintain high replication fidelity and genome stability have remained elusive. EndoMS is a recently discovered hyperthermophilic mismatch-specific endonuclease encoded by nucS in Thermococcales. We deleted the nucS from the actinobacterium Corynebacterium glutamicum and demonstrated a drastic increase of spontaneous transition mutations in the nucS deletion strain. The observed spectra of these mutations were consistent with the enzymatic properties of EndoMS in vitro. The robust mismatch-specific endonuclease activity was detected with the purified C. glutamicum EndoMS protein but only in the presence of the ß-clamp (DnaN). Our biochemical and genetic data suggest that the frequently occurring G/T mismatch is efficiently repaired by the bacterial EndoMS-ß-clamp complex formed via a carboxy-terminal sequence motif of EndoMS proteins. Our study thus has great implications for understanding how the activity of the novel MMR system is coordinated with the replisome and provides new mechanistic insight into genetic diversity and mutational patterns in industrially and clinically (e.g. Mycobacteria) important archaeal and bacterial phyla previously thought to be devoid of the MMR system.


July 7, 2019  |  

Closed complete genome sequences of two nontypeable Haemophilus influenzae strains containing novel modA alleles from the sputum of patients with chronic obstructive pulmonary disease.

Nontypeable Haemophilus influenzae (NTHi) is an important bacterial pathogen that causes otitis media and exacerbations of chronic obstructive pulmonary disease (COPD). Here, we report the complete genome sequences of NTHi strains 10P129H1 and 84P36H1, isolated from COPD patients, which contain the phase-variable epigenetic regulators ModA15 and ModA18, respectively.


July 7, 2019  |  

Meeting report: mobile genetic elements and genome plasticity 2018

The Mobile Genetic Elements and Genome Plasticity conference was hosted by Keystone Symposia in Santa Fe, NM USA, February 11–15, 2018. The organizers were Marlene Belfort, Evan Eichler, Henry Levin and Lynn Maquat. The goal of this conference was to bring together scientists from around the world to discuss the function of transposable elements and their impact on host species. Central themes of the meeting included recent innovations in genome analysis and the role of mobile DNA in disease and evolution. The conference included 200 scientists who participated in poster presentations, short talks selected from abstracts, and invited talks. A total of 58 talks were organized into eight sessions and two workshops. The topics varied from mechanisms of mobilization, to the structure of genomes and their defense strategies to protect against transposable elements.


July 7, 2019  |  

The complete genome sequence of Rhodobaca barguzinensis alga05 (DSM 19920) documents its adaptation for life in soda lakes.

Soda lakes, with their high salinity and high pH, pose a very challenging environment for life. Microorganisms living in these harsh conditions have had to adapt their physiology and gene inventory. Therefore, we analyzed the complete genome of the haloalkaliphilic photoheterotrophic bacterium Rhodobaca barguzinensis strain alga05. It consists of a 3,899,419 bp circular chromosome with 3624 predicted coding sequences. In contrast to most of Rhodobacterales, this strain lacks any extrachromosomal elements. To identify the genes responsible for adaptation to high pH, we compared the gene inventory in the alga05 genome with genomes of 17 reference strains belonging to order Rhodobacterales. We found that all haloalkaliphilic strains contain the mrpB gene coding for the B subunit of the MRP Na+/H+ antiporter, while this gene is absent in all non-alkaliphilic strains, which indicates its importance for adaptation to high pH. Further analysis showed that alga05 requires organic carbon sources for growth, but it also contains genes encoding the ethylmalonyl-CoA pathway for CO2 fixation. Remarkable is the genetic potential to utilize organophosphorus compounds as a source of phosphorus. In summary, its genetic inventory indicates a large flexibility of the alga05 metabolism, which is advantageous in rapidly changing environmental conditions in soda lakes.


July 7, 2019  |  

Pathogenesis of Helicobacter pylori infection

In this review, we highlight progress in the last year in characterizing known virulence factors like flagella and the Cag type IV secretion system with sophisticated struc- tural and biochemical approaches to yield new insight on the assembly and functions of these critical virulence determinants. Several aspects of Helicobacter pylori physi- ology were newly explored this year and evaluated for their functions during stom- ach colonization, including a fascinating role for the essential protease HtrA in allowing access of H. pylori to the basolateral side of the gastric epithelium through cleavage of the tight junction protein E- cadherin to facilitate CagA delivery. Molecular biology tools standard in model bacteria, including regulated gene expression during animal infection and fluorescent reporter gene fusions, were newly applied to H. py- lori to explore functions for urease beyond initial colonization and establish high salt consumption as a mediator of gene expression changes. New sequencing technolo- gies enabled validation of long postulated roles for DNA methylation in regulating H. pylori gene expression. On the cell biology side, elegant work using lineage tracing in the murine model and organoid primary cell culture systems has provided new in- sights into how H. pylori manipulates gastric tissue functions, locally and at a dis- tance, to promote its survival in the stomach and induce pathologic changes. Finally, new work has bolstered the case for genomic variation as an important mechanism to generate phenotypic diversity during changing environmental conditions in the context of diet manipulation in animal infection models and during human experi- mental infection after vaccination.


July 7, 2019  |  

Myxobacteria: Unraveling the potential of a unique microbiome niche

Natural products obtained from microorganisms have been playing an imperative role in drug discovery for decades. Hence, rightfully, microorganisms are considered as the richest source of biochemical remedies. In this review, we represent an unexplored family of bacteria considered to be prolific producers of diverse metabolites. Myxobacteria are gram-negative bacteria which have been reported to produce large families of secondary metabolites with prominent antimicrobial, antifungal, and antitumor activities. Klaus Gerth, Norbert Bedorf, Herbert Irschik, and Hans Reichenbach observed the antifungal activity of Sorangium cellulosum against Mucor hiemalis. In 2006, Hans Reichenbach and his team obtained a novel macrolide cruentaren A from Byssovorax cruenta (myxobacteria). Cruentaren A showed inhibitory activity against yeast and filamentous fungi. It also showed selective inhibitory activity against mitochondrial F-type ATPase. Cruentaren A has been found to be cytotoxic against various human cancer cell lines. In 2007, Reichenbach and his colleagues named an antibiotic produced by Sorangium cellulosum strain Soce895 as thuggacin. This antibiotic acts on the respiration of some bacteria. Other antibiotics from myxobacteria, myxovirescin, and megovalicin show broad-spectrum bactericidal activity. The College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China, evaluated the antitumor property of epothilone, which has shown promise for breast cancer treatment. The study determined high potential and versatile antimicrobial and antitumor secondary metabolites of myxobacteria. In yet another study, Ratjadone A, that exhibited strong antiviral activity against HIV, was obtained from Sorangium cellulosum strain. This compound shows antiviral activity in vitro but has low selectivity. Further search on the derivatives of this compound might help in the future. This is rationale enough to pre-empt that every strain of myxobacteria might be endowed to produce secondary metabolites with novel mechanisms of action which are rarely produced by other microbes. The available data establishes the impact of myxobacterial studies in search for novel metabolites as a front runner in microbiological research and worthy enough to be a thrust area of research in pharmacology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.