Menu
September 22, 2019

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.


September 22, 2019

Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower.

The flower of the safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine for the ability to improve cerebral blood flow. Flavonoids are the primary bioactive components in safflower, and their biosynthesis has attracted widespread interest. Previous studies mostly used second-generation sequencing platforms to survey the putative flavonoid biosynthesis genes. For a better understanding of transcription data and the putative genes involved in flavonoid biosynthesis in safflower, we carry our study.High-quality RNA was extracted from six types of safflower tissue. The RNAs of different tissues were mixed equally and used for multiple size-fractionated libraries (1-2, 2-3 and 3-6 k) library construction. Five cells were carried (2 cells for 1-2 and for 2-3 k libraries and 1 cell for 3-6 k libraries). 10.43Gb clean data and 38,302 de-redundant sequences were captured. 44 unique isoforms were annotated as encoding enzymes involved in flavonoid biosynthesis. The full length flavonoid genes were characterized and their evolutional relationship and expressional pattern were analyzed. They can be divided into eight families, with a large differences in the tissue expression. The temporal expressions under MeJA treatment were also measured, 9 genes are significantly up-regulated and 2 genes are significantly down-regulated. The genes involved in flavonoid synthesis in safflower were predicted in our study. Besides, the SSR and lncRNA are also analyzed in our study.Full-length transcriptome sequences were used in our study. The genes involved in flavonoid synthesis in safflower were predicted in our study. Combined the determination of flavonoids, CtC4H2, CtCHS3, CtCHI3, CtF3H3, CtF3H1 are mainly participated in MeJA promoting the synthesis of flavonoids. Our results also provide a valuable resource for further study on safflower.


September 22, 2019

De novo assembly and characterizing of the culm-derived meta-transcriptome from the polyploid sugarcane genome based on coding transcripts

Sugarcane biomass has been used for sugar, bioenergy and biomaterial production. The majority of the sugarcane biomass comes from the culm, which makes it important to understand the genetic control of biomass production in this part of the plant. A meta-transcriptome of the culm was obtained in an earlier study by using about one billion paired-end (150 bp) reads of deep RNA sequencing of samples from 20 diverse sugarcane genotypes and combining de novo assemblies from different assemblers and different settings. Although many genes could be recovered, this resulted in a large combined assembly which created the need for clustering to reduce transcript redundancy while maintaining gene content. Here, we present a comprehensive analysis of the effect of different assembly settings and clustering methods on de novo assembly, annotation and transcript profiling focusing especially on the coding transcripts from the highly polyploid sugarcane genome. The new coding sequence-based transcript clustering resulted in a better representation of transcripts compared to the earlier approach, having 121,987 contigs, which included 78,052 main and 43,935 alternative transcripts. About 73%, 67%, 61% and 10% of the transcriptome was annotated against the NCBI NR protein database, GO terms, orthologous groups and KEGG orthologies, respectively. Using this set for a differential gene expression analysis between the young and mature sugarcane culm tissues, a total of 822 transcripts were found to be differentially expressed, including key transcripts involved in sugar/fiber accumulation in sugarcane. In the context of the lack of a whole genome sequence for sugarcane, the availability of a well annotated culm-derived meta-transcriptome through deep sequencing provides useful information on coding genes specific to the sugarcane culm and will certainly contribute to understanding the process of carbon partitioning, and biomass accumulation in the sugarcane culm.


September 22, 2019

Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment.

Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa.


September 22, 2019

Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome.

The majority of microbial genomic diversity remains unexplored. This is largely due to our inability to culture most microorganisms in isolation, which is a prerequisite for traditional genome sequencing. Single-cell sequencing has allowed researchers to circumvent this limitation. DNA is amplified directly from a single cell using the whole-genome amplification technique of multiple displacement amplification (MDA). However, MDA from a single chromosome copy suffers from amplification bias and a large loss of specificity from even very small amounts of DNA contamination, which makes assembling a genome difficult and completely finishing a genome impossible except in extraordinary circumstances. Gel microdrop cultivation allows culturing of a diverse microbial community and provides hundreds to thousands of genetically identical cells as input for an MDA reaction. We demonstrate the utility of this approach by comparing sequencing results of gel microdroplets and single cells following MDA. Bias is reduced in the MDA reaction and genome sequencing, and assembly is greatly improved when using gel microdroplets. We acquired multiple near-complete genomes for two bacterial species from human oral and stool microbiome samples. A significant amount of genome diversity, including single nucleotide polymorphisms and genome recombination, is discovered. Gel microdroplets offer a powerful and high-throughput technology for assembling whole genomes from complex samples and for probing the pan-genome of naturally occurring populations.


September 22, 2019

Characterization of the dynamic transcriptome of a herpesvirus with long-read Single Molecule Real-Time Sequencing.

Herpesvirus gene expression is co-ordinately regulated and sequentially ordered during productive infection. The viral genes can be classified into three distinct kinetic groups: immediate-early, early, and late classes. In this study, a massively parallel sequencing technique that is based on PacBio Single Molecule Real-time sequencing platform, was used for quantifying the poly(A) fraction of the lytic transcriptome of pseudorabies virus (PRV) throughout a 12-hour interval of productive infection on PK-15 cells. Other approaches, including microarray, real-time RT-PCR and Illumina sequencing are capable of detecting only the aggregate transcriptional activity of particular genomic regions, but not individual herpesvirus transcripts. However, SMRT sequencing allows for a distinction between transcript isoforms, including length- and splice variants, as well as between overlapping polycistronic RNA molecules. The non-amplified Isoform Sequencing (Iso-Seq) method was used to analyse the kinetic properties of the lytic PRV transcripts and to then classify them accordingly. Additionally, the present study demonstrates the general utility of long-read sequencing for the time-course analysis of global gene expression in practically any organism.


September 22, 2019

Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments.

DNA metabarcoding is widely used to study prokaryotic and eukaryotic microbial diversity. Technological constraints limit most studies to marker lengths below 600 base pairs (bp). Longer sequencing reads of several thousand bp are now possible with third-generation sequencing. Increased marker lengths provide greater taxonomic resolution and allow for phylogenetic methods of classification, but longer reads may be subject to higher rates of sequencing error and chimera formation. In addition, most bioinformatics tools for DNA metabarcoding were designed for short reads and are therefore unsuitable. Here, we used Pacific Biosciences circular consensus sequencing (CCS) to DNA-metabarcode environmental samples using a ca. 4,500 bp marker that included most of the eukaryote SSU and LSU rRNA genes and the complete ITS region. We developed an analysis pipeline that reduced error rates to levels comparable to short-read platforms. Validation using a mock community indicated that our pipeline detected 98% of chimeras de novo. We recovered 947 OTUs from water and sediment samples from a natural lake, 848 of which could be classified to phylum, 397 to genus and 330 to species. By allowing for the simultaneous use of three databases (Unite, SILVA and RDP LSU), long-read DNA metabarcoding provided better taxonomic resolution than any single marker. We foresee the use of long reads enabling the cross-validation of reference sequences and the synthesis of ribosomal rRNA gene databases. The universal nature of the rRNA operon and our recovery of >100 nonfungal OTUs indicate that long-read DNA metabarcoding holds promise for studies of eukaryotic diversity more broadly.© 2018 John Wiley & Sons Ltd.


September 22, 2019

The dynamic landscape of fission yeast meiosis alternative-splice isoforms.

Alternative splicing increases the diversity of transcriptomes and proteomes in metazoans. The extent to which alternative splicing is active and functional in unicellular organisms is less understood. Here, we exploit a single-molecule long-read sequencing technique and develop an open-source software program called SpliceHunter to characterize the transcriptome in the meiosis of fission yeast. We reveal 14,353 alternative splicing events in 17,669 novel isoforms at different stages of meiosis, including antisense and read-through transcripts. Intron retention is the major type of alternative splicing, followed by alternate “intron in exon.” Seven hundred seventy novel transcription units are detected; 53 of the predicted proteins show homology in other species and form theoretical stable structures. We report the complexity of alternative splicing along isoforms, including 683 intra-molecularly co-associated intron pairs. We compare the dynamics of novel isoforms based on the number of supporting full-length reads with those of annotated isoforms and explore the translational capacity and quality of novel isoforms. The evaluation of these factors indicates that the majority of novel isoforms are unlikely to be both condition-specific and translatable but consistent with the possibility of biologically functional novel isoforms. Moreover, the co-option of these unusual transcripts into newly born genes seems likely. Together, the results of this study highlight the diversity and dynamics at the isoform level in the sexual development of fission yeast. © 2017 Kuang et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019

Whole genome sequencing of “Faecalibaculum rodentium” ALO17, isolated from C57BL/6J laboratory mouse feces.

Intestinal microorganisms affect host physiology, including ageing. Given the difficulty in controlling for human studies of the gut microbiome, mouse models provide an alternative avenue to study such relationships. In this study, we report on the complete genome of “Faecalibaculum rodentium” ALO17, a bacterium that was isolated from the faeces of a 9-month-old female C57BL/6J mouse. This strain will be utilized in future in vivo studies detailing the relationships between the gut microbiome and ageing.The whole genome sequence of “F. rodentium” ALO17 was obtained using single-molecule, real-time (SMRT) technique on a PacBio instrument. The assembled genome consisted of 2,542,486 base pairs of double-stranded DNA with a GC content of 54.0 % and no plasmids. The genome was predicted to contain 2794 open reading frames, 55 tRNA genes, and 38 rRNA genes. The 16S rRNA gene of ALO17 was 86.9 % similar to that of Allobaculum stercoricanis DSM 13633(T), and the average overall nucleotide identity between strains ALO17 and DSM 13633(T) was 66.8 %. After confirming the phylogenetic relationship between “F. rodentium” ALO17 and A. stercoricanis DSM 13633(T), their whole genome sequences were compared, revealing that “F. rodentium” ALO17 contains more fermentation-related genes than A. stercoricanis DSM 13633(T). Furthermore, “F. rodentium” ALO17 produces higher levels of lactic acid than A. stercoricanis DSM 13633(T) as determined by high-performance liquid chromatography.The availability of the “F. rodentium” ALO17 whole genome sequence will enhance studies concerning the gut microbiota and host physiology, especially when investigating the molecular relationships between gut microbiota and ageing.


September 22, 2019

Analysis of the gut microbial diversity of dairy cows during peak lactation by PacBio Single-Molecule Real-Time (SMRT) Sequencing.

The gut microbes of dairy cows are strongly associated with their health, but the relationship between milk production and the intestinal microbiota has seldom been studied. Thus, we explored the diversity of the intestinal microbiota during peak lactation of dairy cows.The intestinal microbiota of nine dairy cows at peak lactation was evaluated using the Pacific Biosciences single-molecule real-time (PacBio SMRT) sequencing approach.A total of 32,670 high-quality 16S rRNA gene sequences were obtained, belonging to 12 phyla, 59 families, 107 genera, and 162 species. Firmicutes (83%) were the dominant phylum, while Bacteroides (6.16%) was the dominant genus. All samples showed a high microbial diversity, with numerous genera of short chain fatty acid (SCFA)-producers. The proportion of SCFA producers was relatively high in relation to the identified core intestinal microbiota. Moreover, the predicted functional metagenome was heavily involved in energy metabolism.This study provided novel insights into the link between the dairy cow gut microbiota and milk production.


September 22, 2019

RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg.

Chronic hepatitis B virus (HBV) infection is a major health concern worldwide, frequently leading to liver cirrhosis, liver failure, and hepatocellular carcinoma. Evidence suggests that high viral antigen load may play a role in chronicity. Production of viral proteins is thought to depend on transcription of viral covalently closed circular DNA (cccDNA). In a human clinical trial with an RNA interference (RNAi)-based therapeutic targeting HBV transcripts, ARC-520, HBV S antigen (HBsAg) was strongly reduced in treatment-naïve patients positive for HBV e antigen (HBeAg) but was reduced significantly less in patients who were HBeAg-negative or had received long-term therapy with nucleos(t)ide viral replication inhibitors (NUCs). HBeAg positivity is associated with greater disease risk that may be moderately reduced upon HBeAg loss. The molecular basis for this unexpected differential response was investigated in chimpanzees chronically infected with HBV. Several lines of evidence demonstrated that HBsAg was expressed not only from the episomal cccDNA minichromosome but also from transcripts arising from HBV DNA integrated into the host genome, which was the dominant source in HBeAg-negative chimpanzees. Many of the integrants detected in chimpanzees lacked target sites for the small interfering RNAs in ARC-520, explaining the reduced response in HBeAg-negative chimpanzees and, by extension, in HBeAg-negative patients. Our results uncover a heretofore underrecognized source of HBsAg that may represent a strategy adopted by HBV to maintain chronicity in the presence of host immunosurveillance. These results could alter trial design and endpoint expectations of new therapies for chronic HBV. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


September 22, 2019

Transcriptome profiling using Illumina- and SMRT-based RNA-seq of hot pepper for in-depth understanding of genes involved in CMV infection.

Hot pepper (Capsicum annuum L.) is becoming an increasingly important vegetable crop in the world. Cucumber mosaic virus (CMV) is a destructive virus that can cause leaf distortion and fruit lesions, affecting pepper production. However, studies on the response to CMV infection in pepper at the transcriptional level are limited. In this study, the transcript profiles of pepper leaves after CMV infection were investigated using Illumina and single-molecule real-time (SMRT) RNA-sequencing (RNA-seq). A total of 2143 differentially expressed genes (DEGs) were identified at five different stages. Gene ontology (GO) and KEGG analysis revealed that these DEGs were involved in the response to stress, defense response and plant-pathogen interaction pathways. Among these DEGs, several key genes that consistently appeared in studies of plant-pathogen interactions had increased transcript abundance after inoculation, including chitinase, pathogenesis-related (PR) protein, TMV resistance protein, WRKY transcription factor and jasmonate ZIM-domain protein. Four of these DEGs were further validated by quantitative real-time RT-PCR (qRT-PCR). Furthermore, a total of 73, 597 alternative splicing (AS) events were identified in the pepper leaves after CMV infection, distributed in 12, 615 genes. The intron retention of WRKY33 (Capana09g001251) might be involved in the regulation of CMV infection. Taken together, our study provides a transcriptome-wide insight into the molecular basis of resistance to CMV infection in pepper leaves and potential candidate genes for improving resistance cultivars. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019

De novo transcriptome assembly of the Chinese pearl barley, adlay, by full-length isoform and short-read RNA sequencing.

Adlay (Coix lacryma-jobi) is a tropical grass that has long been used in traditional Chinese medicine and is known for its nutritional benefits. Recent studies have shown that vitamin E compounds in adlay protect against chronic diseases such as cancer and heart disease. However, the molecular basis of adlay’s health benefits remains unknown. Here, we generated adlay gene sets by de novo transcriptome assembly using long-read isoform sequencing (Iso-Seq) and short-read RNA-Sequencing (RNA-Seq). The gene sets obtained from Iso-seq and RNA-seq contained 31,177 genes and 57,901 genes, respectively. We confirmed the validity of the assembled gene sets by experimentally analyzing the levels of prolamin and vitamin E biosynthesis-associated proteins in adlay plant tissues and seeds. We compared the screened adlay genes with known gene families from closely related plant species, such as rice, sorghum and maize. We also identified tissue-specific genes from the adlay leaf, root, and young and mature seed, and experimentally validated the differential expression of 12 randomly-selected genes. Our study of the adlay transcriptome will provide a valuable resource for genetic studies that can enhance adlay breeding programs in the future.


September 22, 2019

Transcriptome sequencing and comparative analysis of differentially-expressed isoforms in the roots of Halogeton glomeratus under salt stress.

Although Halogeton glomeratus (H. glomeratus) has been confirmed to have a unique mechanism to regulate Na+efflux from the cytoplasm and compartmentalize Na+into leaf vacuoles, little is known about the salt tolerance mechanisms of roots under salinity stress. In the present study, transcripts were sequenced using the BGISEQ-500 sequencing platform (BGI, Wuhan, China). After quality control, approximately 24.08 million clean reads were obtained and the average mapping ratio to the reference gene was 70.00%. When comparing salt-treated samples with the control, a total of 550, 590, 1411 and 2063 DEIs were identified at 2, 6, 24 and 72h, respectively. Numerous differentially-expressed isoforms that play important roles in response and adaptation to salt condition are related to metabolic processes, cellular processes, single-organism processes, localization, biological regulation, responses to stimulus, binding, catalytic activity and transporter activity. Fifty-eight salt-induced isoforms were common to different stages of salt stress; most of these DEIs were related to signal transduction and transporters, which maybe the core isoforms regulating Na+uptake and transport in the roots of H. glomeratus. The expression patterns of 18 DEIs that were detected by quantitative real-time polymerase chain reaction were consistent with their respective changes in transcript abundance as identified by RNA-Seq technology. The present study thoroughly explored potential isoforms involved in salt tolerance on H. glomeratus roots at five time points. Our results may serve as an important resource for the H. glomeratus research community, improving our understanding of salt tolerance in halophyte survival under high salinity stress. Copyright © 2018 Elsevier B.V. All rights reserved.


September 22, 2019

High-resolution phylogenetic microbial community profiling.

Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake’s water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.