Menu
April 21, 2020  |  

Extended haplotype phasing of de novo genome assemblies with FALCON-Phase

Haplotype-resolved genome assemblies are important for understanding how combinations of variants impact phenotypes. These assemblies can be created in various ways, such as use of tissues that contain single-haplotype (haploid) genomes, or by co-sequencing of parental genomes, but these approaches can be impractical in many situations. We present FALCON-Phase, which integrates long-read sequencing data and ultra-long-range Hi-C chromatin interaction data of a diploid individual to create high-quality, phased diploid genome assemblies. The method was evaluated by application to three datasets, including human, cattle, and zebra finch, for which high-quality, fully haplotype resolved assemblies were available for benchmarking. Phasing algorithm accuracy was affected by heterozygosity of the individual sequenced, with higher accuracy for cattle and zebra finch (>97%) compared to human (82%). In addition, scaffolding with the same Hi-C chromatin contact data resulted in phased chromosome-scale scaffolds.


April 21, 2020  |  

Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3.

To date, clinical sequencing has focused on genomic DNA using targeted panels and exome sequencing. Sequencing of a large hypertrophic cardiomyopathy (HCM) cohort revealed that positive identification of a disease-associated variant was returned in only 32% of patients, with an additional 15% receiving inconclusive results. When genome sequencing fails to reveal causative variants, the transcriptome may provide additional diagnostic clarity. A recent study examining patients with genetically undiagnosed muscle disorders found that RNA sequencing, when used as a complement to exome and whole genome sequencing, had an overall diagnosis rate of 35%.


April 21, 2020  |  

Single-Molecule Sequencing: Towards Clinical Applications.

In the past several years, single-molecule sequencing platforms, such as those by Pacific Biosciences and Oxford Nanopore Technologies, have become available to researchers and are currently being tested for clinical applications. They offer exceptionally long reads that permit direct sequencing through regions of the genome inaccessible or difficult to analyze by short-read platforms. This includes disease-causing long repetitive elements, extreme GC content regions, and complex gene loci. Similarly, these platforms enable structural variation characterization at previously unparalleled resolution and direct detection of epigenetic marks in native DNA. Here, we review how these technologies are opening up new clinical avenues that are being applied to pathogenic microorganisms and viruses, constitutional disorders, pharmacogenomics, cancer, and more.Copyright © 2018 Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Genetic Variation, Comparative Genomics, and the Diagnosis of Disease.

The discovery of mutations associated with human genetic dis- ease is an exercise in comparative genomics (see Glossary). Although there are many different strategies and approaches, the central premise is that affected persons harbor a significant excess of pathogenic DNA variants as com- pared with a group of unaffected persons (controls) that is either clinically defined1 or established by surveying large swaths of the general population.2 The more exclu- sive the variant is to the disease, the greater its penetrance, the larger its effect size, and the more relevant it becomes to both disease diagnosis and future therapeutic investigation. The most popular approach used by researchers in human genetics is the case–control design, but there are others that can be used to track variants and disease in a family context or that consider the probability of different classes of mutations based on evolutionary patterns of divergence or de novo mutational change.3,4 Although the approaches may be straightforward, the discovery of patho- genic variation and its mechanism of action often is less trivial, and decades of research can be required in order to identify the variants underlying both mendelian and complex genetic traits.


April 21, 2020  |  

A 12-kb structural variation in progressive myoclonic epilepsy was newly identified by long-read whole-genome sequencing.

We report a family with progressive myoclonic epilepsy who underwent whole-exome sequencing but was negative for pathogenic variants. Similar clinical courses of a devastating neurodegenerative phenotype of two affected siblings were highly suggestive of a genetic etiology, which indicates that the survey of genetic variation by whole-exome sequencing was not comprehensive. To investigate the presence of a variant that remained unrecognized by standard genetic testing, PacBio long-read sequencing was performed. Structural variant (SV) detection using low-coverage (6×) whole-genome sequencing called 17,165 SVs (7,216 deletions and 9,949 insertions). Our SV selection narrowed down potential candidates to only five SVs (two deletions and three insertions) on the genes tagged with autosomal recessive phenotypes. Among them, a 12.4-kb deletion involving the CLN6 gene was the top candidate because its homozygous abnormalities cause neuronal ceroid lipofuscinosis. This deletion included the initiation codon and was found in a GC-rich region containing multiple repetitive elements. These results indicate the presence of a causal variant in a difficult-to-sequence region and suggest that such variants that remain enigmatic after the application of current whole-exome sequencing technology could be uncovered by unbiased application of long-read whole-genome sequencing.


April 21, 2020  |  

Detecting a long insertion variant in SAMD12 by SMRT sequencing: implications of long-read whole-genome sequencing for repeat expansion diseases.

Long-read sequencing technology is now capable of reading single-molecule DNA with an average read length of more than 10?kb, fully enabling the coverage of large structural variations (SVs). This advantage may pave the way for the detection of unprecedented SVs as well as repeat expansions. Pathogenic SVs of only known genes used to be selectively analyzed based on prior knowledge of target DNA sequence. The unbiased application of long-read whole-genome sequencing (WGS) for the detection of pathogenic SVs has just begun. Here, we apply PacBio SMRT sequencing in a Japanese family with benign adult familial myoclonus epilepsy (BAFME). Our SV selection of low-coverage WGS data (7×) narrowed down the candidates to only six SVs in a 7.16-Mb region of the BAFME1 locus and correctly determined an approximately 4.6-kb SAMD12 intronic repeat insertion, which is causal of BAFME1. These results indicate that long-read WGS is potentially useful for evaluating all of the known SVs in a genome and identifying new disease-causing SVs in combination with other genetic methods to resolve the genetic causes of currently unexplained diseases.


April 21, 2020  |  

TSD: A Computational Tool To Study the Complex Structural Variants Using PacBio Targeted Sequencing Data.

PacBio sequencing is a powerful approach to study DNA or RNA sequences in a longer scope. It is especially useful in exploring the complex structural variants generated by random integration or multiple rearrangement of endogenous or exogenous sequences. Here, we present a tool, TSD, for complex structural variant discovery using PacBio targeted sequencing data. It allows researchers to identify and visualize the genomic structures of targeted sequences by unlimited splitting, alignment and assembly of long PacBio reads. Application to the sequencing data derived from an HBV integrated human cell line(PLC/PRF/5) indicated that TSD could recover the full profile of HBV integration events, especially for the regions with the complex human-HBV genome integrations and multiple HBV rearrangements. Compared to other long read analysis tools, TSD showed a better performance for detecting complex genomic structural variants. TSD is publicly available at: https://github.com/menggf/tsd. Copyright © 2019 Meng et al.


April 21, 2020  |  

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease.

Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test.We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases.We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs.Robust identification of CNVs by GS is possible within a clinical testing environment.


April 21, 2020  |  

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.


April 21, 2020  |  

Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads.

Tandemly repeated DNA is highly mutable and causes at least 31 diseases, but it is hard to detect pathogenic repeat expansions genome-wide. Here, we report robust detection of human repeat expansions from careful alignments of long but error-prone (PacBio and nanopore) reads to a reference genome. Our method is robust to systematic sequencing errors, inexact repeats with fuzzy boundaries, and low sequencing coverage. By comparing to healthy controls, we prioritize pathogenic expansions within the top 10 out of 700,000 tandem repeats in whole genome sequencing data. This may help to elucidate the many genetic diseases whose causes remain unknown.


October 23, 2019  |  

CRISPR/Cas9-mediated scanning for regulatory elements required for HPRT1 expression via thousands of large, programmed genomic deletions.

The extent to which non-coding mutations contribute to Mendelian disease is a major unknown in human genetics. Relatedly, the vast majority of candidate regulatory elements have yet to be functionally validated. Here, we describe a CRISPR-based system that uses pairs of guide RNAs (gRNAs) to program thousands of kilobase-scale deletions that deeply scan across a targeted region in a tiling fashion (“ScanDel”). We applied ScanDel to HPRT1, the housekeeping gene underlying Lesch-Nyhan syndrome, an X-linked recessive disorder. Altogether, we programmed 4,342 overlapping 1 and 2 kb deletions that tiled 206 kb centered on HPRT1 (including 87 kb upstream and 79 kb downstream) with median 27-fold redundancy per base. We functionally assayed programmed deletions in parallel by selecting for loss of HPRT function with 6-thioguanine. As expected, sequencing gRNA pairs before and after selection confirmed that all HPRT1 exons are needed. However, HPRT1 function was robust to deletion of any intergenic or deeply intronic non-coding region, indicating that proximal regulatory sequences are sufficient for HPRT1 expression. Although our screen did identify the disruption of exon-proximal non-coding sequences (e.g., the promoter) as functionally consequential, long-read sequencing revealed that this signal was driven by rare, imprecise deletions that extended into exons. Our results suggest that no singular distal regulatory element is required for HPRT1 expression and that distal mutations are unlikely to contribute substantially to Lesch-Nyhan syndrome burden. Further application of ScanDel could shed light on the role of regulatory mutations in disease at other loci while also facilitating a deeper understanding of endogenous gene regulation. Copyright © 2017 American Society of Human Genetics. All rights reserved.


September 22, 2019  |  

The third revolution in sequencing technology.

Forty years ago the advent of Sanger sequencing was revolutionary as it allowed complete genome sequences to be deciphered for the first time. A second revolution came when next-generation sequencing (NGS) technologies appeared, which made genome sequencing much cheaper and faster. However, NGS methods have several drawbacks and pitfalls, most notably their short reads. Recently, third-generation/long-read methods appeared, which can produce genome assemblies of unprecedented quality. Moreover, these technologies can directly detect epigenetic modifications on native DNA and allow whole-transcript sequencing without the need for assembly. This marks the third revolution in sequencing technology. Here we review and compare the various long-read methods. We discuss their applications and their respective strengths and weaknesses and provide future perspectives. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


September 22, 2019  |  

Long reads: their purpose and place.

In recent years long-read technologies have moved from being a niche and specialist field to a point of relative maturity likely to feature frequently in the genomic landscape. Analogous to next generation sequencing, the cost of sequencing using long-read technologies has materially dropped whilst the instrument throughput continues to increase. Together these changes present the prospect of sequencing large numbers of individuals with the aim of fully characterizing genomes at high resolution. In this article, we will endeavour to present an introduction to long-read technologies showing: what long reads are; how they are distinct from short reads; why long reads are useful and how they are being used. We will highlight the recent developments in this field, and the applications and potential of these technologies in medical research, and clinical diagnostics and therapeutics.


September 22, 2019  |  

A survey of localized sequence rearrangements in human DNA.

Genomes mutate and evolve in ways simple (substitution or deletion of bases) and complex (e.g. chromosome shattering). We do not fully understand what types of complex mutation occur, and we cannot routinely characterize arbitrarily-complex mutations in a high-throughput, genome-wide manner. Long-read DNA sequencing methods (e.g. PacBio, nanopore) are promising for this task, because one read may encompass a whole complex mutation. We describe an analysis pipeline to characterize arbitrarily-complex ‘local’ mutations, i.e. intrachromosomal mutations encompassed by one DNA read. We apply it to nanopore and PacBio reads from one human cell line (NA12878), and survey sequence rearrangements, both real and artifactual. Almost all the real rearrangements belong to recurring patterns or motifs: the most common is tandem multiplication (e.g. heptuplication), but there are also complex patterns such as localized shattering, which resembles DNA damage by radiation. Gene conversions are identified, including one between hemoglobin gamma genes. This study demonstrates a way to find intricate rearrangements with any number of duplications, deletions, and repositionings. It demonstrates a probability-based method to resolve ambiguous rearrangements involving highly similar sequences, as occurs in gene conversion. We present a catalog of local rearrangements in one human cell line, and show which rearrangement patterns occur.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.